我正在使用
LinearDiscriminantAnalysis
平均的
KFolds
(k=5)。
我能为一个二元分类的案例做这个
下面是我的代码
案例:
import matplotlib.pyplot as plt
import numpy as np
from scipy import interp
from sklearn.datasets import make_classification
from sklearn.cross_validation import KFold
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import cross_val_predict
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import KFold
from sklearn.metrics import roc_curve, auc
from itertools import cycle
from scipy import interp
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
plt.style.use('ggplot')
X, y = make_classification(n_samples=500, random_state=100, flip_y=0.3)
kf = KFold(n_splits = 5, shuffle = True, random_state= 0)
clf = LinearDiscriminantAnalysis()
pipe= Pipeline([('scaler', StandardScaler()), ('clf', clf)])
tprs = []
aucs = []
base_fpr = np.linspace(0, 1, 101)
colors = ['darksalmon', 'gold', 'royalblue', 'mediumseagreen', 'violet']
for i, (train, test) in enumerate(kf.split(X,y)):
model = pipe.fit(X[train], y[train])
y_score = model.predict_proba(X[test])
fpr, tpr, _ = roc_curve(y[test], y_score[:, 1])
roc_auc = auc(fpr, tpr)
aucs.append(roc_auc)
#plt.plot(fpr, tpr, lw=1, alpha=0.6, label='ROC fold %d (AUC = %0.2f)' % (i, roc_auc), c = colors[i])
tpr = interp(base_fpr, fpr, tpr)
tpr[0] = 0.0
tprs.append(tpr)
tprs = np.array(tprs)
mean_tprs = tprs.mean(axis=0)
std = tprs.std(axis=0)
mean_auc = auc(base_fpr, mean_tprs)
std_auc = np.std(aucs)
tprs_upper = np.minimum(mean_tprs + std, 1)
tprs_lower = mean_tprs - std
plt.figure(figsize=(12, 8))
plt.plot(base_fpr, mean_tprs, 'b', alpha = 0.8, label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (mean_auc, std_auc),)
plt.fill_between(base_fpr, tprs_lower, tprs_upper, color = 'blue', alpha = 0.2)
plt.plot([0, 1], [0, 1], linestyle = '--', lw = 2, color = 'r', label = 'Luck', alpha= 0.8)
plt.xlim([-0.01, 1.01])
plt.ylim([-0.01, 1.01])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.legend(loc="lower right")
plt.title('Receiver operating characteristic (ROC) curve')
#plt.axes().set_aspect('equal', 'datalim')
plt.show()
我尝试使用
OneVsRestClassifier
:
import matplotlib.pyplot as plt
import numpy as np
from scipy import interp
from sklearn.datasets import make_classification
from sklearn.cross_validation import KFold
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import cross_val_predict
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.model_selection import KFold
from sklearn.metrics import roc_curve, auc
from itertools import cycle
from scipy import interp
from sklearn.multiclass import OneVsRestClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import label_binarize
plt.style.use('ggplot')
plt.figure(figsize=(12, 8))
X, y = make_classification(n_samples=500, random_state=100, n_classes=3,n_clusters_per_class=1, flip_y=0.3)
kf = KFold(n_splits = 5, shuffle = True, random_state= 0)
clf = OneVsRestClassifier(LinearDiscriminantAnalysis())
pipe= Pipeline([('scaler', StandardScaler()), ('clf', clf)])
classes = np.unique(y)
y_true = label_binarize(y, classes=classes)
n_classes = y_true.shape[1]
base_fpr = np.linspace(0, 1, 101)
colors = ['darksalmon', 'gold', 'royalblue', 'mediumseagreen', 'violet']
fpr = dict()
tpr = dict()
roc_auc = dict()
fff=[]
ttt=[]
aucc=[]
# Fit the model for each fold
for i, (train, test) in enumerate(kf.split(X,y)):
model = pipe.fit(X[train], y[train])
y_score = model.predict_proba(X[test])
# Compute ROC curve and ROC area for each class PER FOLD
for j in range(n_classes):
fpr[j], tpr[j], _ = roc_curve(y_true[test][:, j], y_score[:, j])
roc_auc[j] = auc(fpr[j], tpr[j])
# First aggregate all false positive rates per classe for each fold
all_fpr = np.unique(np.concatenate([fpr[j] for j in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for j in range(n_classes):
mean_tpr += interp(all_fpr, fpr[j], tpr[j])
# Finally average it and compute AUC for EACH FOLD
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
fff.append(all_fpr)
ttt.append(mean_tpr)
aucc.append(roc_auc["macro"])
# Compute average across Folds
fff = np.array(fff)
ttt = np.array(ttt)
aucc = np.array(aucc)
all_fpr_folds = np.unique(np.concatenate([fff[j] for j in range(kf.get_n_splits())]))
# Then interpolate all ROC curves at this points
mean_tpr_folds = np.zeros_like(all_fpr_folds)
for j in range(kf.get_n_splits()):
mean_tpr_folds += interp(all_fpr_folds, fff[j], ttt[j])
# Finally average it and compute AUC
mean_tpr_folds /= float(kf.get_n_splits())
mean_mean_tpr_folds= mean_tpr_folds.mean(axis = 0)
std = mean_tpr_folds.std(axis=0)
tprs_upper = np.minimum(mean_mean_tpr_folds + std, 1)
tprs_lower = mean_mean_tpr_folds - std
plt.plot(all_fpr_folds, mean_tpr_folds, 'b', alpha = 0.8, label=r'Mean ROC (AUC = %0.2f $\pm$ %0.2f)' % (aucc.mean(), aucc.std()),)
plt.fill_between(all_fpr_folds, tprs_lower, tprs_upper, color = 'blue', alpha = 0.2)
plt.plot([0, 1], [0, 1], linestyle = '--', lw = 2, color = 'r', label = 'Luck', alpha= 0.8)
plt.xlim([-0.01, 1.01])
plt.ylim([-0.01, 1.01])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.legend(loc="lower right")
plt.title('Receiver operating characteristic (ROC) curve')
#plt.axes().set_aspect('equal', 'datalim')
plt.show()
我错过了一些东西。。。