我目前正在处理9600个文档并应用gensim LDA。对于培训部分,获取模型的过程似乎要花费很长时间。我也尝试过使用多核函数,但它似乎不起作用。我跑了将近3天,但仍然无法得到lda模型。我已经检查了我的数据和代码的一些特性。我读了这个问题
gensim LdaMulticore not multiprocessing?
,但仍然没有得到解决方案。
corpora.MmCorpus.serialize('corpus_whole.mm', corpus)
corpus = gensim.corpora.MmCorpus('corpus_whole.mm')
dictionary = gensim.corpora.Dictionary.load('dictionary_whole.dict')
dictionary.num_pos
12796870
print(corpus)
MmCorpus(5275227 documents, 44 features, 11446976 non-zero entries)
# lda model training codes
lda = models.LdaModel(corpus, num_topics=45, id2word=dictionary,\
update_every=5, chunksize=10000, passes=100)
ldanulti = models.LdaMulticore(corpus, num_topics=45, id2word=dictionary,\
chunksize=10000, passes=100, workers=3)
这是我检查BLAS的配置,我不确定是否安装了正确的BLAS。
我在这里遇到的一件事是,我无法使用命令apt get在我的mac上安装软件包。我已经安装了Xcode,但它仍然给我一个错误。
python -c 'import scipy; scipy.show_config()'
lapack_mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/misun/anaconda/lib']
include_dirs = ['/Users/misun/anaconda/include']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
lapack_opt_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/misun/anaconda/lib']
include_dirs = ['/Users/misun/anaconda/include']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
blas_opt_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/misun/anaconda/lib']
include_dirs = ['/Users/misun/anaconda/include']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
blas_mkl_info:
libraries = ['mkl_intel_lp64', 'mkl_intel_thread', 'mkl_core', 'iomp5', 'pthread']
library_dirs = ['/Users/misun/anaconda/lib']
include_dirs = ['/Users/misun/anaconda/include']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
我对如何将python中的shardedcorpus与我的字典和语料库一起使用知之甚少,因此,如果有任何帮助,我将不胜感激!为了解决这个问题,我已经三天没睡了!!谢谢