如果我理解正确,你希望在C++中存储一个2D浮动索引数组。你需要一些转换,因为C++只支持一维数组(这不是严格的,但是我们会假装它是)。
  
  
   首先我们需要知道范围和增量。你提供了它们,对于X,范围是
   
    [0, 200]
   
   
    [0, 103]
   
   以增量
   
    1
   
   
    1.5
   
   恭敬地。
  
  
   
    ((200-0)/1) = 200
   
   X和X的可能值
   
    ((103-0)/1.5) = 68.666...
   
   Y的可能值。我们将得到Y的69个可能值。
  
  
   因此,我们可以得到以下数组:
  
  int my_array_of_ints[69 * 200];
  
   
    [X=0][Y=0]
   
   
    [0 * 69 + 0]
   
   索引(项)
   
    my_array_of_ints[0]
   
   ),而我们的
   
    [X=1][Y=1.5]
   
   将是我们的
   
    [1 * 69 + 1]
   
   
    my_array_of_ints[70]
   
   ). 请注意,我们不能有带有[Y=0.5]或[Y=1]的项,因为Y增量固定为1.5(即Y必须是0或1.5或3或4.5或6或……)。
  
  
  
  #include <cmath>
int get_element(float x, float y){
    int index_x = std::round(x / 1);
    int index_y = std::round(y / 1.5);
    if ((0 <= index_x) && (index_x < 200) &&
        (0 <= index_y) && (index_y < 69)){
        return my_array_of_ints[index_y * 200 + index_x];
    } else {
         // You should decide what to do if x or y is out-of-range
         return 0;
    }
}
  
   哪里:
  
  
   - 
    
     1
    
- 
    
     1.5
    是y的增量
- 
    
     200
    是该范围内x的可能值的个数
- 
    
     69
    是该范围内y的可能值的个数。
  
  get_element(1, 1.5)
  
   它将返回
   
   
   里面
   
    my_array_of_ints
   
  
  
  
  #include <cmath>
#include <iostream>
template <typename Datatype> class Vector2D {
    float x_increment;
    float x_minimum;
    float x_maximum;
    float y_increment;
    float y_minimum;
    float y_maximum;
    // For example, Y range [0, 103] with increment 1.5
    // results in 69 possibles values for Y, and we need to
    // remember to "linearize" the indexes
    int x_possibles;
    int y_possibles;
    Datatype *array;
    public:
    Vector2D(float x_increment, float y_increment,
             float x_maximum, float y_maximum,
             float x_minimum=0, float y_minimum=0)
        : x_increment(x_increment), x_minimum(x_minimum),
          x_maximum(x_maximum), y_increment(y_increment),
          y_minimum(y_minimum), y_maximum(y_maximum),
          // These two may seem arcane, but they are the
          // generalization of how we found the values initially
          x_possibles(std::ceil((x_maximum-x_minimum)/x_increment)),
          y_possibles(std::ceil((y_maximum-y_minimum)/y_increment)),
          array(new Datatype[y_possibles * x_possibles]) {
        // This may help to understand this 2D Vector
        std::cout << "Creating 2D vector X in range ["
            << x_minimum << ", " << x_maximum
            << "] with increment of " << x_increment
            << " (totalizing " << x_possibles
            << " possible values for x) "
            << " and Y in range [" << y_minimum
            << ", " << y_maximum << "] with increment of "
            << y_increment << " (totalizing " << y_possibles
            << " values for y)."
            << std::endl;
    }
    // Frees up the raw array
    ~Vector2D(){
        delete this->array;
    }
    Datatype& get_element(float x, float y){
        int index_x = std::round((x-x_minimum)/this->x_increment);
        int index_y = std::round((y-y_minimum)/this->y_increment);
        // This debug message may help understand this function
        // It is, in some sense, the answer of this question
        std::cout << "The 2D point [X=" << x << ", Y=" << y
                  <<  "] is mapped into the vector index ["
                  << index_y << " * " << x_possibles
                  << " + " << index_x << "]" << std::endl;
        if ((0 <= index_x) && (index_x < x_possibles) &&
            (0 <= index_y) && (index_y < y_possibles)){
            return this->array[index_y * x_possibles + index_x];
        } else {
            // You should decide what to do if x or y is out-of-range
            return this->array[0];
        }
    }
};
int main(){
    // And you could use that class like this:
    // A 2D-like vector with X [0, 200] inc. 1
    // and Y [0, 103] inc. 1.5 of floats
    Vector2D<float> my_data(1, 1.5, 200, 103, 0, 0);
    // Sets [X=1][Y=1] to 0.61345
    my_data.get_element(1, 1) = 0.61345;
    auto elem1 = my_data.get_element(1, 1);
    // Prints the [X=1][Y=1] to screen
    std::cout << "[X=1][Y=1] is "
              << elem1
              << std::endl;
    // Gets a few more interesting points
    my_data.get_element(0, 0);
    my_data.get_element(1, 1.5);
    my_data.get_element(10, 15);
    my_data.get_element(200, 103);
    // A separator
    std::cout << "---" << std::endl;
    // Another example, this time using chars
    // X is [-10, 1] inc. 0.1 and Y is [-5, 3] inc. 0.05
    Vector2D<char> my_chars(0.1, 0.05, 1, 3, -10, -5);
    // Sets [X=-4.3][Y=2.25] to '!'
    my_chars.get_element(-4.3, 2.25) = '!';
    auto elem2 = my_chars.get_element(-4.3, 2.25);
    std::cout << "[X=-4.3][Y=2.25] is "
              << elem2
              << std::endl;
}
  
   输出:
  
  Creating 2D vector X in range [0, 200] with increment of 1 (totalizing 200 possible values for x)  and Y in range [0, 103] with increment of 1.5 (totalizing 69 values for y).
The 2D point [X=1, Y=1] is mapped into the vector index [1 * 200 + 1]
The 2D point [X=1, Y=1] is mapped into the vector index [1 * 200 + 1]
[X=1][Y=1] is 0.61345
The 2D point [X=0, Y=0] is mapped into the vector index [0 * 200 + 0]
The 2D point [X=1, Y=1.5] is mapped into the vector index [1 * 200 + 1]
The 2D point [X=10, Y=15] is mapped into the vector index [10 * 200 + 10]
The 2D point [X=200, Y=103] is mapped into the vector index [69 * 200 + 200]
---
Creating 2D vector X in range [-10, 1] with increment of 0.1 (totalizing 110 possible values for x)  and Y in range [-5, 3] with increment of 0.05 (totalizing 160 values for y).
The 2D point [X=-4.3, Y=2.25] is mapped into the vector index [145 * 110 + 57]
The 2D point [X=-4.3, Y=2.25] is mapped into the vector index [145 * 110 + 57]
[X=-4.3][Y=2.25] is !
  
   希望这能有所帮助。