你可以和我一起玩
s
,例如
s=0.005
,情节看起来是这样的(仍然不是非常漂亮,但你可以进一步调整):
但我确实会使用一个“适当”的函数和fit,例如。
curve_fit
. 下面的函数仍然不是理想的,因为它是单调递增的,所以我们忽略了末尾的递减;情节如下:
这是样条曲线和实际拟合的完整代码:
from scipy.interpolate import UnivariateSpline
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
def func(x, ymax, n, k, c):
return ymax * x ** n / (k ** n + x ** n) + c
x=np.array([ 1.00094909, 1.08787635, 1.17481363, 1.2617564, 1.34867881, 1.43562284,
1.52259341, 1.609522, 1.69631283, 1.78276102, 1.86426648, 1.92896789,
1.9464453, 1.94941586, 2.00062852, 2.073691, 2.14982808, 2.22808316,
2.30634034, 2.38456905, 2.46280126, 2.54106611, 2.6193345, 2.69748825])
y=np.array([-0.10057627, -0.10172142, -0.10320428, -0.10378959, -0.10348456, -0.10312503,
-0.10276956, -0.10170055, -0.09778279, -0.08608644, -0.05797392, 0.00063599,
0.08732999, 0.16429878, 0.2223306, 0.25368884, 0.26830932, 0.27313931,
0.27308756, 0.27048902, 0.26626313, 0.26139534, 0.25634544, 0.2509893 ])
popt, pcov = curve_fit(func, x, y, p0=[y.max(), 2, 2, -0.1], bounds=([0, 0, 0, -0.2], [0.4, 45, 2000, 10]))
xfit = np.linspace(x.min(), x.max(), 200)
plt.scatter(x, y)
plt.plot(xfit, func(xfit, *popt))
plt.show()
s = UnivariateSpline(x, y, k=3, s=0.005)
xfit = np.linspace(x.min(), x.max(), 200)
plt.scatter(x, y)
plt.plot(xfit, s(xfit))
plt.show()
第三种选择是使用更高级的函数,该函数还可以在结束和结束时重现减少的值
differential_evolution
适合的;这似乎最适合:
代码如下(使用与上述相同的数据):
from scipy.optimize import curve_fit, differential_evolution
def sigmoid_with_decay(x, a, b, c, d, e, f):
return a * (1. / (1. + np.exp(-b * (x - c)))) * (1. / (1. + np.exp(d * (x - e)))) + f
def error_sigmoid_with_decay(parameters, x_data, y_data):
return np.sum((y_data - sigmoid_with_decay(x_data, *parameters)) ** 2)
res = differential_evolution(error_sigmoid_with_decay,
bounds=[(0, 10), (0, 25), (0, 10), (0, 10), (0, 10), (-1, 0.1)],
args=(x, y),
seed=42)
xfit = np.linspace(x.min(), x.max(), 200)
plt.scatter(x, y)
plt.plot(xfit, sigmoid_with_decay(xfit, *res.x))
plt.show()