这个算法其实很容易理解,即使乍一看似乎正好相反。
它基于以下内容
线
Ï = cos(θ) * x + sin(θ) * y
哪里
是从原点到直线的垂直距离,并且
是垂直线和水平轴形成的角度。
如果你知道的话。如果你采取所有可能的配对(在给定的精度范围内)
属于
和
你实际上得到了所有可能存在于你的图像中的线条。那就是
Map[Ï, θ ]
商店。如果希望角度精度为1度,则需要180列。对于,可能的最大距离是图像的对角线长度。所以取一个像素的精度,行数可以是图像的对角线长度。但是
你的
图像,正方形(英寸
):
int maxTheta = 180;
int houghHeight = (int)( Math.Sqrt( 2 ) * Math.Max( imgWidth, imgHeight ) ) / 2;
int doubleHoughHeight = houghHeight * 2;
doubleHoughHeight
Math.Max
!
图像的每个点都被映射到
数组:
Ï Î¸ number of points in that line( pair (Ï, θ) )
Map 0 0 num0
0 1 num1
0 2 num2
. . .
. . .
doubleHoughHeight â 1 179 numN
门槛
过滤出少于50个点的线。下面的代码也过滤掉了行:
//Is this point a local maxima (9x9)
int peak = Accumulator[ rho, theta ];
for( int ly = -4; ly <= 4; ly++ ) {
for( int lx = -4; lx <= 4; lx++ ) {
if( ( ly + rho >= 0 && ly + rho < houghWidth ) && ( lx + theta >= 0 && lx + theta < houghHeight ) ) {
if( (int)Accumulator[ rho + ly, theta + lx ] > peak ) {
peak = Accumulator[ rho + ly, theta + lx ];
ly = lx = 5;
}
}
}
}
if( peak > (int)Accumulator[ rho, theta ] )
continue;
这个
终点
起点
得到的点实际上是直线和两个轴的交点:
int x1, y1, x2, y2;
x1 = y1 = x2 = y2 = 0;
double rad = theta * Math.PI / 180;
if( theta >= 45 && theta <= 135 ) {
//y = (r - x Math.Cos(t)) / Math.Sin(t)
x1 = 0;
y1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x1 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
x2 = imageWidth - 0;
y2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x2 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
}
else {
//x = (r - y Math.Sin(t)) / Math.Cos(t);
y1 = 0;
x1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y1 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
y2 = imageHeight - 0;
x2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y2 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
}
lines.Add( new Line( new Point( x1, y1 ), new Point( x2, y2 ) ) );
编辑
你的代码运行良好,但它不计算实际长度。我找到的一个解决方案是存储2D中每个位置的所有点
地图
你的
HoughMap.cs公司
public List<Point>[] lstPnts { get; set; }
public void Compute() {
if( Image != null ) {
...
...
...
Map = new int[ doubleHoughHeight, maxTheta ];
//Add this code////////////////////////////////////////////////
//lstPnts is an doubleHoughHeight * maxTheta size array of list Points
lstPnts = new List<Point>[ doubleHoughHeight * maxTheta ];
for(int i = 0; i < doubleHoughHeight * maxTheta; i++ ) {
lstPnts[ i ] = new List<Point>();
}
///////////////////////////////////////////////////////////////
....
....
....
if( ( rho > 0 ) && ( rho <= Map.GetLength( 0 ) ) ) {
Map[ rho, theta ]++;
//Add this line of code////////////////////////////////////////
lstPnts[ rho * maxTheta + theta ].Add( new Point( x, y ) );
///////////////////////////////////////////////////////////////
PointsCount++;
}
....
}
}
在
HoughLineTransform.cs公司
public List<Line> GetLines( int threshold ) {
if( Accumulator == null ) {
throw new Exception( "HoughMap is null" );
}
int houghWidth = Accumulator.Width;
int houghHeight = Accumulator.Height;
int imageWidth = Accumulator.Image.GetLength( 0 );
int imageHeight = Accumulator.Image.GetLength( 1 );
List<Line> lines = new List<Line>();
if( Accumulator == null )
return lines;
for( int rho = 0; rho < houghWidth; rho++ ) {
for( int theta = 0; theta < houghHeight; theta++ ) {
if( (int)Accumulator[ rho, theta ] > threshold ) {
//Is this point a local maxima (9x9)
int peak = Accumulator[ rho, theta ];
int dd = 10;
for( int ly = -dd; ly <= dd; ly++ ) {
for( int lx = -dd; lx <= dd; lx++ ) {
if( ( ly + rho >= 0 && ly + rho < houghWidth ) && ( lx + theta >= 0 && lx + theta < houghHeight ) ) {
if( (int)Accumulator[ rho + ly, theta + lx ] > peak ) {
peak = Accumulator[ rho + ly, theta + lx ];
ly = lx = dd + 1;
}
}
}
}
if( peak > (int)Accumulator[ rho, theta ] )
continue;
//Map[ rho, theta ] contains these points -> lstPnts[ rho * houghHeight + theta ].
//The points in that list with min and max X coordinate are the Start and End ones
int x1 = houghWidth, y1 = 0, x2 = -1, y2 = 0;
for(int i = 0; i < Accumulator.lstPnts[ rho * houghHeight + theta ].Count; i++ ) {
if( Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X > x2 ) {
x2 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X;
y2 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].Y;
}
if( Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X < x1 ) {
x1 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].X;
y1 = Accumulator.lstPnts[ rho * houghHeight + theta ][ i ].Y;
}
}
//Remove this code
/*int x1, y1, x2, y2;
x1 = y1 = x2 = y2 = 0;
double rad = theta * Math.PI / 180;
if( theta >= 45 && theta <= 135 ) {
//y = (r - x Math.Cos(t)) / Math.Sin(t)
x1 = 0;
y1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x1 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
x2 = imageWidth - 0;
y2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( x2 - ( imageWidth / 2 ) ) * Math.Cos( rad ) ) ) / Math.Sin( rad ) + ( imageHeight / 2 ) );
}
else {
//x = (r - y Math.Sin(t)) / Math.Cos(t);
y1 = 0;
x1 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y1 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
y2 = imageHeight - 0;
x2 = (int)( ( (double)( rho - ( houghWidth / 2 ) ) - ( ( y2 - ( imageHeight / 2 ) ) * Math.Sin( rad ) ) ) / Math.Cos( rad ) + ( imageWidth / 2 ) );
}*/
lines.Add( new Line( new Point( x1, y1 ), new Point( x2, y2 ) ) );
}
}
}
return lines;
}