我正在研究spark流上下文,它从avro序列化中的kafka主题获取数据,如下所示。
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "localhost:9092",
"schema.registry.url" -> "http://localhost:8081",
"key.deserializer" -> "io.confluent.kafka.serializers.KafkaAvroDeserializer",
"value.deserializer" -> "io.confluent.kafka.serializers.KafkaAvroDeserializer",
"group.id" -> "1"
)
使用Kafka utils,我创建了如下的直接流
val topics = Set("mysql-foobar")
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String,String](
topics,
kafkaParams)
)
我还将数据作为
stream.foreachRDD ( rdd => {
rdd.foreachPartition(iterator => {
while (iterator.hasNext) {
val next = iterator.next()
println(next.value())
}
})
})
this
和
this
我的输出如下
{"c1": 4, "c2": "Jarry", "create_ts": 1536758512000, "update_ts": 1537204805000}