我目前正在通过这个链接进行生存分析
https://square.github.io/pysurvival/tutorials/credit_risk.html
.我试着做一些建模,问题出现了。如果我们有不平衡的分类,我们想用SMOTE来平衡数据集,那么我们该怎么做呢?
# Building training and testing sets
from sklearn.model_selection import train_test_split
index_train, index_test = train_test_split( range(N), test_size = 0.4)
data_train = dataset.loc[index_train].reset_index( drop = True )
data_test = dataset.loc[index_test].reset_index( drop = True )
# Creating the X, T and E inputs
X_train, X_test = data_train[features], data_test[features]
T_train, T_test = data_train[time_column], data_test[time_column]
E_train, E_test = data_train[event_column], data_test[event_column]
完整的说明可以在这里找到
https://square.github.io/pysurvival/tutorials/credit_risk.html
.我不能像其他分类那样执行SMOTE,因为有两个输出列(即事件和时间)。在其他分类中,只有一种输出。
有人能帮我解决这个问题吗?