你试过了吗
tf.contrib.estimator.add_metrics(estimator, metric_fn)
(
doc
)?它需要一个初始化的估计器(可以预先封装),并将由
metric_fn
。
用法示例:
def custom_metric(labels, predictions):
# This function will be called by the Estimator, passing its predictions.
# Let's suppose you want to add the "mean" metric...
# Accessing the class predictions (careful, the key name may change from one canned Estimator to another)
predicted_classes = predictions["class_ids"]
# Defining the metric (value and update tensors):
custom_metric = tf.metrics.mean(labels, predicted_classes, name="custom_metric")
# Returning as a dict:
return {"custom_metric": custom_metric}
# Initializing your canned Estimator:
classifier = tf.estimator.DNNClassifier(feature_columns=columns_feat, hidden_units=[10, 10], n_classes=NUM_CLASSES)
# Adding your custom metrics:
classifier = tf.contrib.estimator.add_metrics(classifier, custom_metric)
# Training/Evaluating:
tf.logging.set_verbosity(tf.logging.INFO) # Just to have some logs to display for demonstration
train_spec = tf.estimator.TrainSpec(input_fn=lambda:your_train_dataset_function(),
max_steps=TRAIN_STEPS)
eval_spec=tf.estimator.EvalSpec(input_fn=lambda:your_test_dataset_function(),
steps=EVAL_STEPS,
start_delay_secs=EVAL_DELAY,
throttle_secs=EVAL_INTERVAL)
tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
日志:
...
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [20/200]
INFO:tensorflow:Evaluation [40/200]
...
INFO:tensorflow:Evaluation [200/200]
INFO:tensorflow:Finished evaluation at 2018-04-19-09:23:03
INFO:tensorflow:Saving dict for global step 1: accuracy = 0.5668, average_loss = 0.951766, custom_metric = 1.2442, global_step = 1, loss = 95.1766
...
如您所见
custom_metric
随默认指标和损失一起返回。