我已经在R中实现了keras lstm网络,我可以对其进行培训并正确使用fit功能。但当我使用“预测”功能时,我会遇到以下错误:
pred<-基本型号%>%预测(matchsetarray)
警告:tensorflow:为输入KerasTensor传感器(类型规格=TensorSpec(形状=(96,2,26),数据类型=tf)构建了形状(96,2,26)的模型。float32,name='lstm_3_input',name='lstm_3_input',description=“由层'lstm_3_input'创建),但在形状不兼容的输入上调用了它(32,2,26)。
py_call_impl(可调用、dots$args、dots$keywords)中出错:
ValueError:在用户代码中:
File "C:\Users\Utente\AppData\Local\R-MINI~1\envs\R-RETI~1\lib\site-packages\keras\engine\training.py", line 1801, in predict_function *
return step_function(self, iterator)
File "C:\Users\Utente\AppData\Local\R-MINI~1\envs\R-RETI~1\lib\site-packages\keras\engine\training.py", line 1790, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\Utente\AppData\Local\R-MINI~1\envs\R-RETI~1\lib\site-packages\keras\engine\training.py", line 1783, in run_step **
outputs = model.predict_step(data)
File "C:\Users\Utente\AppData\Local\R-MINI~1\envs\R-RETI~1\lib\site-packages\keras\engine\training.py", line 1751, in predict_step
return self(x, training=False)
File "C:\Users\Utente\AppData\Local\R-MINI~1\envs\R-RETI~1\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "C:\Users\
然而,预测输入的维数是(96,2,26),但“预测”考虑维度(32, 2, 26)的输入“MatCHSET数组”。我能强迫predict阅读正确的格式吗?
我试图验证输入“matchsetarray”的维度:
dim(matchsetarray)
[1] 96 2 26
这是“预测”函数所期望的正确维度。