如果您正在寻找一个带括号的解析输出,那么可以使用
Tree.pprint()
>>> import nltk
>>> sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), ("dog", "NN"), ("barked","VBD"), ("at", "IN"), ("the", "DT"), ("cat", "NN")]
>>>
>>> pattern = """NP: {<DT>?<JJ>*<NN>}
... VBD: {<VBD>}
... IN: {<IN>}"""
>>> NPChunker = nltk.RegexpParser(pattern)
>>> result = NPChunker.parse(sentence)
>>> result.pprint()
(S
(NP the/DT little/JJ yellow/JJ dog/NN)
(VBD barked/VBD)
(IN at/IN)
(NP the/DT cat/NN))
但很可能你在找
S
_________________|_____________________________
NP VBD IN NP
________|_________________ | | _____|____
the/DT little/JJ yellow/JJ dog/NN barked/VBD at/IN the/DT cat/NN
Tree.pretty_print()
https://github.com/nltk/nltk/blob/develop/nltk/tree.py#L692
:
def pretty_print(self, sentence=None, highlight=(), stream=None, **kwargs):
"""
Pretty-print this tree as ASCII or Unicode art.
For explanation of the arguments, see the documentation for
`nltk.treeprettyprinter.TreePrettyPrinter`.
"""
from nltk.treeprettyprinter import TreePrettyPrinter
print(TreePrettyPrinter(self, sentence, highlight).text(**kwargs),
file=stream)
它创造了一个
TreePrettyPrinter
对象,
https://github.com/nltk/nltk/blob/develop/nltk/treeprettyprinter.py#L50
class TreePrettyPrinter(object):
def __init__(self, tree, sentence=None, highlight=()):
if sentence is None:
leaves = tree.leaves()
if (leaves and not any(len(a) == 0 for a in tree.subtrees())
and all(isinstance(a, int) for a in leaves)):
sentence = [str(a) for a in leaves]
else:
# this deals with empty nodes (frontier non-terminals)
# and multiple/mixed terminals under non-terminals.
tree = tree.copy(True)
sentence = []
for a in tree.subtrees():
if len(a) == 0:
a.append(len(sentence))
sentence.append(None)
elif any(not isinstance(b, Tree) for b in a):
for n, b in enumerate(a):
if not isinstance(b, Tree):
a[n] = len(sentence)
sentence.append('%s' % b)
self.nodes, self.coords, self.edges, self.highlight = self.nodecoords(
tree, sentence, highlight)
sentence.append('%s' % b)
https://github.com/nltk/nltk/blob/develop/nltk/treeprettyprinter.py#L97
问题是
为什么会引起打字错误
TypeError: not all arguments converted during string formatting
如果我们仔细看,它看起来让我们可以使用
print('%s' % b)
# String
>>> x = 'abc'
>>> type(x)
<class 'str'>
>>> print('%s' % x)
abc
# Integer
>>> x = 123
>>> type(x)
<class 'int'>
>>> print('%s' % x)
123
# Float
>>> x = 1.23
>>> type(x)
<class 'float'>
>>> print('%s' % x)
1.23
# Boolean
>>> x = True
>>> type(x)
<class 'bool'>
>>> print('%s' % x)
True
令人惊讶的是,它甚至可以在列表中使用!
>>> x = ['abc', 'def']
>>> type(x)
<class 'list'>
>>> print('%s' % x)
['abc', 'def']
但它被
tuple
!!
>>> x = ('DT', 123)
>>> x = ('abc', 'def')
>>> type(x)
<class 'tuple'>
>>> print('%s' % x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: not all arguments converted during string formatting
所以如果我们回到
https://github.com/nltk/nltk/blob/develop/nltk/treeprettyprinter.py#L95
if not isinstance(b, Tree):
a[n] = len(sentence)
sentence.append('%s' % b)
既然我们知道
句子.append(“%s”%b)
无法处理
,添加对元组类型的检查并以某种方式连接元组中的项并转换为
str
将产生美好的
pretty_print
:
if not isinstance(b, Tree):
a[n] = len(sentence)
if type(b) == tuple:
b = '/'.join(b)
sentence.append('%s' % b)
S码
_________________|_____________________________
NP中的NP-VBD
________|_________________ | | _____|____
而不改变
nltk
让我们看看
result
i、 东阿
Tree
Tree('S', [Tree('NP', [('the', 'DT'), ('little', 'JJ'), ('yellow', 'JJ'), ('dog', 'NN')]), Tree('VBD', [('barked', 'VBD')]), Tree('IN', [('at', 'IN')]), Tree('NP', [('the', 'DT'), ('cat', 'NN')])])
看起来叶子是作为字符串的元组列表保存的。
[('the', 'DT'), ('cat', 'NN')]
,所以我们可以做一些黑客,使它成为字符串列表,例如。
[('the/DT'), ('cat/NN')]
Tree.pretty\u打印()
会玩得很好。
既然我们知道
树.pprint()
(S
(NP the/DT little/JJ yellow/JJ dog/NN)
(VBD barked/VBD)
(IN at/IN)
(NP the/DT cat/NN))
我们可以简单地输出一个带括号的解析字符串,然后重新读取解析
树
Tree.fromstring()
:
from nltk import Tree
Tree.fromstring(str(result)).pretty_print()
最终付款:
import nltk
sentence = [("the", "DT"), ("little", "JJ"), ("yellow", "JJ"), ("dog", "NN"), ("barked","VBD"), ("at", "IN"), ("the", "DT"), ("cat", "NN")]
pattern = """NP: {<DT>?<JJ>*<NN>}
VBD: {<VBD>}
IN: {<IN>}"""
NPChunker = nltk.RegexpParser(pattern)
result = NPChunker.parse(sentence)
Tree.fromstring(str(result)).pretty_print()
[输出]:
S码
NP中的NP-VBD
________|_________________ | | _____|____