代码之家  ›  专栏  ›  技术社区  ›  LeastSquaresWonderer

二维数组中第一维上每个元素的索引数组(numpy.,tensorflow)

  •  1
  • LeastSquaresWonderer  · 技术社区  · 6 年前
    indexes = np.array([[0,1,3],[1,2,4 ]])
    data = np.random.rand(2,5)
    

    现在,我想要一个形状(2,3)的数组,其中

    result[0] = data[0,indexes[0]]
    result[1] = data[1,indexes[1]]
    

    实现这一目标的正确方法是什么?这是一种可以推广到更大数组(甚至更高维)的简单方法。

    请注意以下问题的区别: this ,其中索引数组包含元组。这不是我要问的。

    编辑

    这个问题的一个更一般的提法是:

    • data.shape==(s0,s1,…,sn)
    • index.shape==(s0,s1,…,sn-1,K)
    • 所以,它们有所有维度,但最后一个相等

    result[i, j, ..., k] = data[i, j,...,k, indexes[i, j, ..., k]]
    

    len([i, j, ..., k]) == len(data)-1 == len(indexes) - 1
    
    2 回复  |  直到 4 年前
        1
  •  1
  •   javidcf    6 年前

    以下是NumPy和TensorFlow解决方案:

    import numpy as np
    import tensorflow as tf
    
    def gather_index_np(data, index):
        data = np.asarray(data)
        index = np.asarray(index)
        # Make open grid of all but last dimension indices
        grid = np.ogrid[tuple(slice(s) for s in index.shape[:-1])]
        # Add extra dimension in grid
        grid = [g[..., np.newaxis] for g in grid]
        # Complete index
        index_full = tuple(grid + [index])
        # Index data to get result
        result = data[index_full]
        return result
    
    def gather_index_tf(data, index):
        data = tf.convert_to_tensor(data)
        index = tf.convert_to_tensor(index)
        index_shape = tf.shape(index)
        d = index.shape.ndims
        # Make grid of all dimension indices
        grid = tf.meshgrid(*(tf.range(index_shape[i]) for i in range(d)), indexing='ij')
        # Complete index
        index_full = tf.stack(grid[:-1] + [index], axis=-1)
        # Index data to get result
        result = tf.gather_nd(data, index_full)
        return result
    

    例子:

    import numpy as np
    import tensorflow as tf
    
    data = np.arange(10).reshape((2, 5))
    index = np.array([[0, 1, 3], [1, 2, 4]])
    print(gather_index_np(data, index))
    # [[0 1 3]
    #  [6 7 9]]
    with tf.Session() as sess:
        print(sess.run(gather_index_tf(data, index)))
    # [[0 1 3]
    #  [6 7 9]]
    
        2
  •  1
  •   Paul Panzer    6 年前

    numpy take_along_axis

    例子:

    >>> a = np.arange(24).reshape(2,3,4)
    >>> i = np.random.randint(0,4,(2,3,5))
    >>> i
    array([[[3, 3, 0, 1, 3],
            [3, 1, 0, 3, 3],
            [3, 2, 0, 3, 3]],
    
           [[2, 3, 0, 0, 0],
            [1, 1, 3, 1, 2],
            [1, 3, 0, 0, 2]]])
    
    >>> np.take_along_axis(a, i, -1)
    array([[[ 3,  3,  0,  1,  3],
            [ 7,  5,  4,  7,  7],
            [11, 10,  8, 11, 11]],
    
           [[14, 15, 12, 12, 12],
            [17, 17, 19, 17, 18],
            [21, 23, 20, 20, 22]]])