// LearningPipeline allows you to add steps in order to keep everything together
// during the learning process.
// <Snippet5>
var pipeline = new LearningPipeline();
// </Snippet5>
// The TextLoader loads a dataset with comments and corresponding postive or negative sentiment.
// When you create a loader, you specify the schema by passing a class to the loader containing
// all the column names and their types. This is used to create the model, and train it.
// <Snippet6>
pipeline.Add(new TextLoader(_dataPath).CreateFrom<SentimentData>());
// </Snippet6>
// TextFeaturizer is a transform that is used to featurize an input column.
// This is used to format and clean the data.
// <Snippet7>
pipeline.Add(new TextFeaturizer("Features", "SentimentText"));
//</Snippet7>
// Adds a FastTreeBinaryClassifier, the decision tree learner for this project, and
// three hyperparameters to be used for tuning decision tree performance.
// <Snippet8>
pipeline.Add(new FastTreeBinaryClassifier() { NumLeaves = 50, NumTrees = 50, MinDocumentsInLeafs = 20 });
// </Snippet8>