Energy[n_] := (2 n + 1) â/2 Ï;
Ï[z_, n_] :=
1/2 1/Sqrt[2^n n!] ((m Ï)/(Ï â))^(1/4)
Exp[-((m Ï z^2)/(2 â))] HermiteH[n, Sqrt[(m Ï)/â] z];
m = 1;
Ï = 1;
â = UnitConvert[Quantity[1, "PlanckConstant"], "SIBase"];
â = QuantityMagnitude[â];
â = 1;
Plot[{Evaluate@Table[Energy[n] + Ï[z, n], {n, 0, 5}],
Evaluate@Table[Energy[n], {n, 0, 5}], z^2/2}, {z, -5, 5},
PlotRange -> {0, 7},
PlotStyle ->
Join[{Red, Yellow, Green, Blue, Purple, Cyan},
Table[{Gray, Opacity[0.3]}, {n, 0, 5}], {Black}],
Filling -> {1 -> Energy[0], 2 -> Energy[1]}]