它看起来是正确的。但是,您可能希望以更传统的方式进行此操作,即仅使用矩阵计算。通常,“u形”向量是列,根据经验可以通过以下方式确认:
u
易发生移位。让我们创建
u
和
x
像这样的
>>> import numpy as np
>>> u = np.array([ 0.7231519, -0.36004635, -0.82970352, 1.1832742 ])[:,np.newaxis]
>>> x = np.array([ 1.10667023, -1.13105657, -0.77213626, 1.14220917])[:,np.newaxis]
>>> x.shape
(4, 1) # four rows and one column
cartesian product
(这实际上可以看作是
covariance matrix
>>> uuT = np.dot(u, u.T)
>>> uuT
array([[ 0.52294867, -0.2603682 , -0.60000168, 0.85568699],
[-0.2603682 , 0.12963337, 0.29873172, -0.42603356],
[-0.60000168, 0.29873172, 0.68840793, -0.98176677],
[ 0.85568699, -0.42603356, -0.98176677, 1.40013783]])
和(标量)平方和
>>> uTu = np.dot(u.T, u)
>>> uTu
array([[ 2.74112781]])
最后
>>> I = np.eye(4)
>>> np.dot(I - uuT / uTu, x)
array([[ 0.26253613],
[-0.71077502],
[ 0.19637539],
[-0.23902499]])