我有一个具有此层次结构的项目:
project
âââ libs
â âââ __init__.py
â âââ sub_lib1
â â âââ file1.py
â â âââ __init__.py
â âââ sub_lib2
â âââ file2.py
â âââ __init__.py
âââ main.py
main.py的内容:
from libs.sub_lib1.file1 import func1
from libs.sub_lib2.file2 import func2
#some code
func1(parameters)
#some code
func2(parameters)
#some code
文件内容1.py:
#import some packages
import tensorflow as tf
def func1(parameters):
#some code
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
tf.reset_default_graph()
x = tf.placeholder(tf.float32,shape=[None,IMG_SIZE_ALEXNET,IMG_SIZE_ALEXNET,3])
y_true = tf.placeholder(tf.float32,shape=[None,output_classes])
with tf.Session(config=config) as session:
saver.restore(session, "path to the model1")
k = session.run([tf.nn.softmax(y_pred)], feed_dict={x:test_x , hold_prob1:1,hold_prob2:1})
#some code
return(the_results)
文件内容2.py:
#import some packages
import tensorflow as tf
def func2(parameters):
#some code
config = tf.ConfigProto()
config.gpu_options.allow_growth=True
sess = tf.Session(config=config)
with gfile.GFile('path the model2', 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
sess.run(tf.global_variables_initializer())
#Get the needed tensors
input_img = sess.graph.get_tensor_by_name('Placeholder:0')
output_cls_prob = sess.graph.get_tensor_by_name('Reshape_2:0')
output_box_pred = sess.graph.get_tensor_by_name('rpn_bbox_pred/Reshape_1:0')
#some code to prepare and resize the image
cls_prob, box_pred = sess.run([output_cls_prob, output_box_pred], feed_dict={input_img: blobs['data']})
#some code
return(the_results)
运行main.py时,出现以下错误:
Traceback (most recent call last):
File "main.py", line 46, in <module>
func2(parameters)
File "/home/hani/opti/libs/sub_lib2/file2.py", line 76, in func2
cls_prob, box_pred = sess.run([output_cls_prob, output_box_pred], feed_dict={input_img: blobs['data']})
File "/home/hani/.virtualenvs/opti/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/home/hani/.virtualenvs/opti/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1128, in _run
str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (1, 600, 863, 3) for Tensor 'Placeholder:0', which has shape '(?, 227, 227, 3)'
经过一些调试,我在第二个模型中没有找到任何具有(?)的张量。,227,227,3)形状。相反,我发现张量x(由
x = tf.placeholder(tf.float32,shape=[None,IMG_SIZE_ALEXNET,IMG_SIZE_ALEXNET,3])
在func1文件1)中有(?,227,227,3)形状。
我检查了输入的形状
input_img = sess.graph.get_tensor_by_name('Placeholder:0')
在来自文件2的func2中,我找到了它(?,227,227,3)当我运行main.py时。但是,当我运行file2.py时(通过运行
python file2.py
,我没有得到这个错误,我发现输入的形状是占位符形状:(???,3)。
所以我假设这两个模型都有相同的张量名称(
占位符
)当我在main.py中同时导入file1和file2时,占位符的第一个形状(?,227,227,3)保留在GPU内存中。
我试过
session.close()
在file1.py中,但它不起作用!
在同一进程中使用多个TensorFlow会话,而不会混淆它们,是否有更合适的方法?或者简单地说,如何在同一个Python进程中启动另一个前正确关闭TensorFlow会话?