从研究的角度来看,我认为您的第一个解决方案可能是更合适的方法。在物理模拟中,应始终使用根据定义始终为正的特性的对数。在上述代码中,这些是温度和压力。无论您使用Fortran或任何其他编程语言,或任何可能的变量类型,严格正定的物理变量通常会导致计算中的上溢和下溢。如果有什么事情可以发生,它就会发生。
其他物理量也是如此,例如,能量(伽马射线暴的典型能量约为10^54 ergs)、任意维物体的体积(半径为10米的100维球体的体积约为10^100),甚至概率(许多统计问题中的似然函数可以取约10^1000}或更小的值)。使用正定变量的对数变换将使您的代码能够处理大约10^10^307的数字(对于双精度变量)。
关于代码中使用的Fortran语法,还有一些注意事项:
-
变量
RESMAX
在代码中使用,无需初始化。
-
当给变量赋值时,适当地指定文字常量的类型很重要,否则,程序结果可能会受到影响。例如,以下是在调试模式下使用英特尔Fortran编译器2018编译的原始代码的输出:
-0.152581477302743 7.31503025786548 259.608693509165
-3.152934473473579E-002 99474.1999921620
这是相同代码的输出,但所有文字常量都以kind参数作为后缀
_dp
(请参阅以下代码的修订版本):
-0.152580456940175 7.31501855886952 259.608692604963
-8.731149137020111E-011 99474.2302854451
此答案中修订代码的输出与上述问题中原始代码的输出略有不同。
-
没有必要使用
.gt.
,
.ge.
,
.le.
,
.lt.
, ..., 用于比较。据我所知,这些是传统的FORTRAN语法。使用更有吸引力的符号(
<
,
>
,
<=
,
>=
,
==
)用于比较。
-
没有必要使用
GOTO
Fortran程序中的语句。这也是遗留的FORTRAN。通常,简单优雅的do循环和if块可以替换
转到
声明,就像下面修订的代码一样。
-
不再需要在Fortran中使用特定种类的内部函数(例如
dexp
,
dlog
, ... 用于双精度)。几乎所有(或许所有)Fortran内部函数都有泛型名称(
exp
,
log
, ...) 在当前Fortran标准中。
以下是该问题中程序的修订版,解决了上述所有过时语法,以及处理非常大或非常小的正定变量的问题(我可能在日志转换一些永远不会导致溢出或下溢的变量时走得太远了,但我在这里的目的只是展示正定变量的日志转换背后的逻辑,以及如何处理它们的算术,而不会潜在地导致溢出/下溢/错误)。
program test
implicit none
integer,parameter :: dp = SELECTED_REAL_KIND(12,307)
real(kind=dp) kappa,interc,pres,dltdlp,tup,tdwn
real(kind=dp) pthta,alogp,alogpd,alogpu,thta,f,dfdp,p1
real(kind=dp) t1,resid,potdwn,potup,pdwn,pup,epsln,thta1
integer i,j,kout,n,maxit,nmax,resmax
real(kind=dp) :: log_resmax, log_pthta, log_t1, log_dummy, log_residAbsolute, sign_of_f
real(kind=dp) :: log_epsln, log_pdwn, log_pup, log_thta, log_thta1, log_p1, log_dfdp, log_f
logical :: residIsPositive, resmaxIsPositive, residIsBigger
log_resmax = log(log_resmax)
resmaxIsPositive = .true.
kappa = 2._dp/7._dp
epsln = 1._dp
potdwn = 259.39996337890625_dp
potup = 268.41687198359159_dp
pdwn = 100000.00000000000_dp
pup = 92500.000000000000_dp
alogpu = 11.43496392350051_dp
alogpd = 11.512925464970229_dp
thta = 260.00000000000000_dp
alogp = 11.512925464970229_dp
log_epsln = log(epsln)
log_pup = log(pup)
log_pdwn = log(pdwn)
log_thta = log(thta)
! known temperature at lower level
tdwn = potdwn * (pdwn/1.e5_dp)**kappa
! known temperature at upper level
tup = potup *(pup/1.e5_dp)** kappa
! linear change of temperature wrt lnP between different levels
dltdlp = log(tup/tdwn)/(alogpu-alogpd)
! ln(T) value(intercept) where Pressure is 1 Pa and assume a linear
! relationship between P and T
interc = log(tup) - dltdlp*alogpu
! Initial guess value for pressure
!pthta = exp( (log(thta)-interc-kappa*alogp) / (dltdlp-kappa) )
log_pthta = ( log_thta - interc - kappa*alogp ) / ( dltdlp - kappa )
n=0
MyDoLoop: do
!First guess of temperature at intermediate level
!t1 = exp(dltdlp * log(pthta)+interc)
log_t1 = dltdlp * log_pthta + interc
!Residual error when calculating Newton Raphson iteration(Pascal)
!resid = pthta - 1.e5_dp*(t1/thta)**(1._dp/kappa)
log_dummy = log(1.e5_dp) + ( log_t1 - log_thta ) / kappa
if (log_pthta>=log_dummy) then
residIsPositive = .true.
log_residAbsolute = log_pthta + log( 1._dp - exp(log_dummy-log_pthta) )
else
residIsPositive = .false.
log_residAbsolute = log_dummy + log( 1._dp - exp(log_pthta-log_dummy) )
end if
print *, "log-transformed values:"
print *, dltdlp,interc,log_t1,log_residAbsolute,log_pthta
print *, "non-log-transformed values:"
if (residIsPositive) print *, dltdlp,interc,exp(log_t1),exp(log_residAbsolute),exp(log_pthta)
if (.not.residIsPositive) print *, dltdlp,interc,exp(log_t1),-exp(log_residAbsolute),exp(log_pthta)
!if (abs(resid) > epsln) then
if ( log_residAbsolute > log_epsln ) then
n=n+1
if (n <= nmax) then
! First guess of potential temperature given T1 and
! pressure level guess
!thta1 = t1 * (1.e5_dp/pthta)**kappa
log_thta1 = log_t1 + ( log(1.e5_dp)-log_pthta ) * kappa
!f = thta - thta1
if ( log_thta>=thta1 ) then
log_f = log_thta + log( 1._dp - exp( log_thta1 - log_thta ) )
sign_of_f = 1._dp
else
log_f = log_thta + log( 1._dp - exp( log_thta - log_thta1 ) )
sign_of_f = 1._dp
end if
!dfdp = (kappa-dltdlp)*(1.e5_dp/pthta)**kappa*exp(interc + (dltdlp -1._dp)*log(pthta))
! assuming kappa-dltdlp>0 is TRUE always:
log_dfdp = log(kappa-dltdlp) + kappa*(log(1.e5_dp)-log_pthta) + interc + (dltdlp -1._dp)*log_pthta
!p1 = pthta - f/dfdp
! p1 should be, by definition, positive. Therefore:
log_dummy = log_f - log_dfdp
if (log_pthta>=log_dummy) then
log_p1 = log_pthta + log( 1._dp - sign_of_f*exp(log_dummy-log_pthta) )
else
log_p1 = log_dummy + log( 1._dp - sign_of_f*exp(log_pthta-log_dummy) )
end if
!if (p1 <= pdwn) then
if (log_p1 <= log_pdwn) then
!if (p1 >= pup) then
if (log_p1 >= log_pup) then
log_pthta = log_p1
cycle MyDoLoop
else
n = nmax
end if
end if
else
!if (resid > resmax) resmax = resid
residIsBigger = ( residIsPositive .and. resmaxIsPositive .and. log_residAbsolute>log_resmax ) .or. &
( .not.residIsPositive .and. .not.resmaxIsPositive .and. log_residAbsolute<log_resmax ) .or. &
( residIsPositive .and. .not. resmaxIsPositive )
if ( residIsBigger ) then
log_resmax = log_residAbsolute
resmaxIsPositive = residIsPositive
end if
maxit = maxit+1
end if
end if
exit MyDoLoop
end do MyDoLoop
end program test
以下是该程序的示例输出,与原始代码的输出非常一致:
log-transformed values:
-0.152580456940175 7.31501855886952 5.55917546888014
-22.4565579499410 11.5076538974964
non-log-transformed values:
-0.152580456940175 7.31501855886952 259.608692604963
-1.767017293116268E-010 99474.2302854451
为了进行比较,以下是原始代码的输出:
-0.152580456940175 7.31501855886952 259.608692604963
-8.731149137020111E-011 99474.2302854451