假设您的数据帧没有大量的列,这个函数应该做您想要做的事情,并且性能相当好。我已经使用
for
在列之间循环,这样可能会有一个更高性能/优雅的解决方案。
import pandas as pd
# Initialise dataframe
df = {"dan":[pd.np.nan,2,2,1,pd.np.nan,2,1],
"ste":[2,pd.np.nan,1,pd.np.nan,1,1,pd.np.nan],
"bob":[pd.np.nan,1,pd.np.nan,2,2,pd.np.nan,2]}
df = pd.DataFrame(df)[["dan","ste","bob"]]
def matrix_create(df):
rows = []
for col in df.columns:
subvals, index = [], []
for subcol in df.columns:
index.append(subcol)
if subcol == col:
subvals.append(0)
else:
subvals.append(df[~pd.isnull(df[col])][subcol].sum())
rows.append(subvals)
return pd.DataFrame(rows,columns=df.columns,index=index)
matrix_create(df)