我在Pytorch有自己的网络。它首先针对二进制分类器(2类)进行训练。经过10公里的时间,我获得了训练后的体重
10000_model.pth
. 现在,我想用这个模型来解决使用相同网络的4类分类器问题。因此,我想将二进制分类器中所有训练过的权重转移到4类问题中,而不需要lass层进行随机初始化。我怎么做呢?这是我的模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.conv_classify= nn.Conv2d(50, 2, 1, 1, bias=True) # number of class
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv_classify(x))
return x
这就是我所做的
model = Net ()
checkpoint_dict = torch.load('10000_model.pth')
pretrained_dict = checkpoint_dict['state_dict']
model_dict = model.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
model.load_state_dict(model_dict)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
pretrained_dict.pop('conv_classify.weight', None)
pretrained_dict.pop('conv_classify.bias', None)
这意味着
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
什么都不做。
怎么了?我正在使用pytorch 1.0。谢谢