代码之家  ›  专栏  ›  技术社区  ›  Sai Somanath Komanduri

我应该使用什么gstreamer管道?

  •  1
  • Sai Somanath Komanduri  · 技术社区  · 7 年前

    我正在尝试将视频从raspberry pi流到运行opencv的pc。

    我在pi上使用的代码是:

    raspivid -t 999999 -h 720 -w 1080 -fps 30 -hf -vf -b 2000000 -o - | gst-launch-1.0 -v fdsrc ! h264parse ! queue ! rtph264pay config-interval=1 pt=96 ! gdppay ! tcpserversink host=192.168.0.103 port=5000
    

    我正在使用gstreamer传输视频。

    我可以在我的电脑上使用以下命令使其工作。。。

    gst-launch-1.0 -v tcpclientsrc host=192.168.0.103 port=5000  ! gdpdepay !  rtph264depay ! avdec_h264 ! videoconvert ! autovideosink sync=false
    

    我的opencv的参数应该是什么 VideoCapture 作用

    谢谢你的帮助。。。

    PS:我使用的是python,opencv是在gstreamer支持下编译的。

    我的完整代码(也使用Tensorflow):

    import numpy as np
    import os
    import six.moves.urllib as urllib
    import sys
    import tarfile
    import tensorflow as tf
    import zipfile
    from collections import defaultdict
    from io import StringIO
    from matplotlib import pyplot as plt
    from PIL import Image
    import time
    import cv2
    
    # Capture Video using webcam
    stream_addr = "tcpclientsrc host=192.168.0.103 port=5000 ! gdpdepay ! rtph264depay ! video/x-h264, width=1280, height=720, format=YUY2, framerate=49/1 ! ffdec_h264 ! autoconvert ! appsink sync=false"
    # Net cat pipe
    pipe = "/dev/stdin"
    cap = cv2.VideoCapture("tcpclientsrc host=192.168.0.103 port=5000  ! gdpdepay !  rtph264depay ! ffdec_h264 ! videoconvert ! video/x-raw, format=BGR ! appsink", cv2.CAP_GSTREAMER)
    # cap = cv2.VideoCapture()
    
    # This is needed since the notebook is stored in the object_detection folder.
    sys.path.append("..")
    
    # ## Object detection imports
    # Here are the imports from the object detection module.
    from utils import label_map_util
    
    from utils import visualization_utils as vis_util
    
    
    # # Model preparation
    
    # ## Variables
    #
    # Any model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_CKPT` to point to a new .pb file.
    #
    # By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
    # What model to download.
    MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
    MODEL_FILE = MODEL_NAME + '.tar.gz'
    DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
    
    # Path to frozen detection graph. This is the actual model that is used for the object detection.
    PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
    
    # List of the strings that is used to add correct label for each box.
    PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
    
    NUM_CLASSES = 90
    
    # ## Download Model
    if not os.path.isfile(MODEL_FILE) and not os.path.isdir(MODEL_NAME):
        opener = urllib.request.URLopener()
        opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
        tar_file = tarfile.open(MODEL_FILE)
        for file in tar_file.getmembers():
            file_name = os.path.basename(file.name)
            if 'frozen_inference_graph.pb' in file_name:
                tar_file.extract(file, os.getcwd())
    
    
    # ## Load a (frozen) Tensorflow model into memory.
    detection_graph = tf.Graph()
    with detection_graph.as_default():
      od_graph_def = tf.GraphDef()
      with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')
    
    
    # ## Loading label map
    # Label maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`.  Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
    label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
    categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
    category_index = label_map_util.create_category_index(categories)
    list_classname = {}
    
    def printClass(s):
        leng = len(list_classname)
        if s is not None:
            i = s.index(':')
            label = s[:i]
            score = s[i + 2:len(s) - 1]
            if label in list_classname:
                if int(list_classname[label]) < int(score):
                    list_classname[label] = score
            else:
                list_classname[label] = score
            if len(list_classname) > leng:
                leng = len(list_classname)
                print(s)
    
    with detection_graph.as_default():
      with tf.Session(graph=detection_graph) as sess:
        while True:
          ret, image_np = cap.read()
          # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
          image_np_expanded = np.expand_dims(image_np, axis=0)
          image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
          # Each box represents a part of the image where a particular object was detected.
          boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
          # Each score represent how level of confidence for each of the objects.
          # Score is shown on the result image, together with the class label.
          scores = detection_graph.get_tensor_by_name('detection_scores:0')
          classes = detection_graph.get_tensor_by_name('detection_classes:0')
          num_detections = detection_graph.get_tensor_by_name('num_detections:0')
          # Actual detection.
          (boxes, scores, classes, num_detections) = sess.run(
              [boxes, scores, classes, num_detections],
              feed_dict={image_tensor: image_np_expanded})
          # Visualization of the results of a detection.
          printClass(vis_util.visualize_boxes_and_labels_on_image_array(
              image_np,
              np.squeeze(boxes),
              np.squeeze(classes).astype(np.int32),
              np.squeeze(scores),
              category_index,
              use_normalized_coordinates=True,
              line_thickness=8))
    
          cv2.imshow('object detection', cv2.resize(image_np, (800,600)))
          if cv2.waitKey(25) & 0xFF == ord('q'):
            cv2.destroyAllWindows()
            break
    
    speak_string = ""
    for k in list_classname:
        speak_string = ("Detected, " + k + " probability is " + list_classname[k])
        os.system("say " + speak_string)
        time.sleep(1)
    

    这是我收到的错误:

    Traceback (most recent call last):
      File "oculus.py", line 112, in <module>
        feed_dict={image_tensor: image_np_expanded})
      File "/Users/SMBP/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 895, in run
        run_metadata_ptr)
      File "/Users/SMBP/anaconda3/envs/tensorflow/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 1093, in _run
        np_val = np.asarray(subfeed_val, dtype=subfeed_dtype)
      File "/Users/SMBP/anaconda3/envs/tensorflow/lib/python3.6/site-packages/numpy/core/numeric.py", line 531, in asarray
        return array(a, dtype, copy=False, order=order)
    TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType
    

    '

    1 回复  |  直到 7 年前
        1
  •  1
  •   zindarod    7 年前

    请尝试以下操作:

    VideoCapture cap("tcpclientsrc host=192.168.0.103 port=5000  ! gdpdepay !  rtph264depay ! avdec_h264 ! videoconvert ! video/x-raw, format=BGR ! appsink", CAP_GSTREAMER);
    

    编辑:

    cap = cv2.VideoCapture('tcpclientsrc host=192.168.0.103 port=5000  ! gdpdepay !  rtph264depay ! avdec_h264 ! videoconvert ! video/x-raw, format=BGR ! appsink', cv2.CAP_GSTREAMER)