代码之家  ›  专栏  ›  技术社区  ›  Brian D

如何通过光栅图像找到成本最低的路径?

  •  5
  • Brian D  · 技术社区  · 6 年前

    起点=(0,0)
    终点=(12,-5)

    例如,通过(灰度)光栅图像提取蜿蜒河流的近似路径。

    # fake up some noisy, but reproducible, "winding river" data
    set.seed(123)
    df <- data.frame(x=seq(0,12,by=.01), 
                     y=sapply(seq(0,12,by=.01), FUN = function(i) 10*sin(i)+rnorm(1)))
    
    # convert to "pixels" of raster data
    # assumption: image color is greyscale, only need one numeric value, v
    img <- data.frame(table(round(df$y,0), round(df$x,1)))
    names(img) <- c("y","x","v")
    img$y <- as.numeric(as.character(img$y))
    img$x <- as.numeric(as.character(img$x))
    
    
    ## take a look at the fake "winding river" raster image...
    library(ggplot2)
    ggplot(img) +
      geom_raster(aes(x=x,y=y,fill=v))
    

    output image from ggplot command

    1 回复  |  直到 5 年前
        1
  •  8
  •   Brian D    6 年前

    当我在写我的例子时,我偶然发现了一个使用“gdistance”r包的答案。。。希望其他人会发现这是有用的。

    library(gdistance)
    library(sp)
    library(ggplot2)
    
    # convert to something rasterFromXYZ() understands
    spdf <- SpatialPixelsDataFrame(points = img[c("x","y")], data = img["v"])
    
    # use rasterFromXYZ to make a RasterLayer 
    r <- rasterFromXYZ(spdf)
    
    # make a transition layer, specifying a sensible function and the number of connection directions
    tl <- transition(r, function(x) min(x), 8)
    ## mean(x), min(x), and max(x) produced similar results for me
    
    # extract the shortest path as something we can plot
    sPath <- shortestPath(tl, c(0,0), c(12,-5), output = "SpatialLines")
    
    # conversion for ggplot
    sldf <- fortify(SpatialLinesDataFrame(sPath, data = data.frame(ID = 1)))
    
    # plot the original raster, truth (white), and the shortest path solution (green)   
    ggplot(img) +
      geom_raster(aes(x=x,y=y,fill=v)) +
      stat_function(data=img, aes(x=x), fun = function(x) 10*sin(x), geom="line", color="white") +
      geom_path(data=sldf, aes(x=long,y=lat), color="green") 
    

    ggplot of raster pixels with shortest solution line and truth line

    我想确保我不是给自己太简单的问题。。。所以我做了一个更吵闹的图像。

    img2 <- img
    img2$v <- ifelse(img2$v==0, runif(sum(img2$v==0),3,8), img2$v)
    
    spdf2 <- SpatialPixelsDataFrame(points = img2[c("x","y")], data = img2["v"])
    r2 <- rasterFromXYZ(spdf2)
    
    # for this noisier image, I needed a different transition function. 
    # The one from the vignette worked well enough for this example.
    tl2 <- transition(r2, function(x) 1/mean(x), 8)
    sPath2 <- shortestPath(tl2, c(0,0), c(12,-5), output = "SpatialLines")
    sldf2 <- fortify(SpatialLinesDataFrame(sPath2, data = data.frame(ID = 1)))
    
    ggplot(img2) +
      geom_raster(aes(x=x,y=y,fill=v)) +
      stat_function(data=img2, aes(x=x), fun = function(x) 10*sin(x), geom="line", color="white") +
      geom_path(data=sldf2, aes(x=long,y=lat), color="green") 
    

    plot of noisier image with truth and solution lines


    我想看看同样的工作流程是否适用于真实的光栅图像,而不仅仅是假数据,所以。。。

    library(jpeg)
    # grab some river image...
    url <- "https://c8.alamy.com/comp/AMDPJ6/fiji-big-island-winding-river-aerial-AMDPJ6.jpg"
    download.file(url, "river.jpg", mode = "wb")
    jpg <- readJPEG("./river.jpg")
    img3 <- melt(jpg, varnames = c("y","x","rgb"))
    img3$rgb <- as.character(factor(img3$rgb, levels = c(1,2,3), labels=c("r","g","b")))
    img3 <- dcast(img3, x + y ~ rgb)
    
    # convert rgb to greyscale 
    img3$v <- img3$r*.21 + img3$g*.72 + img3$b*.07
    

    有关rgb到灰度的信息,请参见: https://stackoverflow.com/a/27491947/2371031

    # define some start/end point coordinates
    pts_df <- data.frame(x = c(920, 500), 
                         y = c(880, 50))
    
    # set a reference "grey" value as the mean of the start and end point "v"s
    ref_val <- mean(c(subset(img3, x==pts_df[1,1] & y==pts_df[1,2])$v,
                      subset(img3, x==pts_df[2,1] & y==pts_df[2,2])$v))
    
    spdf3 <- SpatialPixelsDataFrame(points = img3[c("x","y")], data = img3["v"])
    r3 <- rasterFromXYZ(spdf3)
    
    # transition layer defines "conductance" between two points
    # x is the two point values, "v" = c(v1, v2) 
    # 0 = no conductance, >>1 = good conductance, so
    # make a transition function that encourages only small changes in v compared to the reference value. 
    tl3 <- transition(r3, function(x) (1/max(abs((x/ref_val)-1))^2)-1, 8) 
    
    sPath3 <- shortestPath(tl3, as.numeric(pts_df[1,]), as.numeric(pts_df[2,]), output = "SpatialLines")
    sldf3 <- fortify(SpatialLinesDataFrame(sPath3, data = data.frame(ID = 1)))
    
    # plot greyscale with points and path
    ggplot(img3) +
      geom_raster(aes(x,y, fill=v)) +
      scale_fill_continuous(high="white", low="black") + 
      scale_y_reverse() +
      geom_point(data=pts_df, aes(x,y), color="red") + 
      geom_path(data=sldf3, aes(x=long,y=lat), color="green")
    

    image of river with shortest path overlaid in green

    在找到一个有效的转换函数之前,我尝试了不同的转换函数。这个可能比它需要的更复杂,但它是有效的。你可以增加幂项(从2到3,4,5,6…),它继续工作。去掉幂项后,它没有找到正确的解决方案。


    替代解决方案使用 igraph 包裹。

    使用“igraph”r包找到了一组备选答案。我认为需要注意的是,这里最大的区别之一是“igraph”支持n维图,而“gdistance”只支持2D图。因此,例如,将这个答案扩展到3D是相对容易的。

    library(igraph)
    
    # make a 2D lattice graph, with same dimensions as "img"
    l <- make_lattice(dimvector = c(length(unique(img$y)), 
                                    length(unique(img$x))), directed=F, circular=F)
    summary(l)
    # > IGRAPH ba0963d U--- 3267 6386 -- Lattice graph
    # > + attr: name (g/c), dimvector (g/n), nei (g/n), mutual (g/l), circular (g/l)
    
    # set vertex attributes
    V(l)$x = img$x
    V(l)$y = img$y
    V(l)$v = img$v
    
    # "color" is a known attribute that will be used by plot.igraph()
    V(l)$color = grey.colors(length(unique(img$v)))[img$v+1]
    
    # compute edge weights as a function of attributes of the two connected vertices
    el <- get.edgelist(l)
    
    # "weight" is a known edge attribute, and is used in shortest_path()
    # I was confused about weights... lower weights are better, Inf weights will be avoided.
    # also note from help: "if all weights are positive, then Dijkstra's algorithm is used."
    E(l)$weight <- 1/(pmax(V(l)[el[, 1]]$v, V(l)[el[, 2]]$v))
    E(l)$color = grey.colors(length(unique(E(l)$weight)))[E(l)$weight+1]
    

    https://stackoverflow.com/a/27446127/2371031 (谢谢!)

    # find the start/end vertices
    start = V(l)[V(l)$x == 0 & V(l)$y == 0]
    end = V(l)[V(l)$x == 12 & V(l)$y == -5] 
    
    # get the shortest path, returning "both" (vertices and edges)...
    result <- shortest_paths(graph = l, from = start, to = end,  output = "both")
    
    # color the edges that were part of the shortest path green
    V(l)$color = ifelse(V(l) %in% result$vpath[[1]], "green", V(l)$color)
    E(l)$color = ifelse(E(l) %in% result$epath[[1]], "green", E(l)$color)
    
    # color the start and end vertices red
    V(l)$color = ifelse(V(l) %in% c(start,end), "red", V(l)$color)
    
    plot(l, vertex.shape = "square", vertex.size=2, vertex.frame.color=NA, vertex.label=NA, curved=F)
    

    plot of graph with shortest path edges and vertices colored green

    img2 <- img
    img2$v <- ifelse(img2$v==0, runif(sum(img2$v==0),3,8), img2$v)
    
    l <- make_lattice(dimvector = c(length(unique(img2$y)),
                                    length(unique(img2$x))), directed=F, circular=F)
    
    # set vertex attributes
    V(l)$x = img2$x
    V(l)$y = img2$y
    V(l)$v = img2$v
    V(l)$color = grey.colors(length(unique(img2$v)))[factor(img2$v)]
    
    # compute edge weights 
    el <- get.edgelist(l)
    
    # proper edge weight calculation is the key to a good solution...
    E(l)$weight <- (pmin(V(l)[el[, 1]]$v, V(l)[el[, 2]]$v))
    E(l)$color = grey.colors(length(unique(E(l)$weight)))[factor(E(l)$weight)]
    
    start = V(l)[V(l)$x == 0 & V(l)$y == 0]
    end = V(l)[V(l)$x == 12 & V(l)$y == -5]
    
    # get the shortest path, returning "both" (vertices and edges)...
    result <- shortest_paths(graph = l, from = start, to = end,  output = "both")
    
    # color the edges that were part of the shortest path green
    V(l)$color = ifelse(V(l) %in% result$vpath[[1]], "green", V(l)$color)
    E(l)$color = ifelse(E(l) %in% result$epath[[1]], "green", E(l)$color)
    
    # color the start and end vertices red
    V(l)$color = ifelse(V(l) %in% c(start,end), "red", V(l)$color)
    
    plot(l, vertex.shape = "square", vertex.size=2, vertex.frame.color=NA, vertex.label=NA, curved=F)
    

    igraph plot of noisier image with shortest path in green