代码之家  ›  专栏  ›  技术社区  ›  ab123

typeerror:“matmul”op的输入“b”的float32类型与参数“a”的int32类型不匹配,即使在强制转换之后也是如此

  •  1
  • ab123  · 技术社区  · 6 年前

    当我试图运行以下程序时,出现以下错误

    类型错误:“matmul”op的输入“b”的float32类型与参数“a”的int32类型不匹配。

    我想上面写着 _x 属于类型 int32 ,但我已经使用 tf.cast

    import tensorflow as tf
    import numpy as np
    
    x = ([[3, 4, 5], [1, 2, 3], [3, 2, 5]])
    y = ([[1, 2, 3, 4, 5, 6, 7, 8], [5, 3, 2, 5, 2, 6, 2, 5], [3, 2, 2, 5, 2, 4, 2, 7]])
    
    tf.cast(x, tf.float32)
    tf.cast(y, tf.float32)
    
    train_x = np.asarray([3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167,
        7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1], dtype=float)
    train_y = np.asarray([1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221,
        2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3], dtype=float)
    
    learning_rate = 0.01
    training_epochs = 100
    batch_size = 10
    
    n_hidden_1 = 256  # number of neurons in first hidden layer
    n_hidden_2 = 256  # ,,      ...      ,,, second hidden layer
    n_input = 50  # Dimension of feature used
    n_output = 8  # Number of output neurons
    
    weights = {
        'hidden_1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),  # Randomly initialising weights
        'hidden_2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),  # Randomly initialising weights
        'out': tf.Variable(tf.random_normal([n_hidden_2, n_output]))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_output]))
    }
    
    
    def mlp(_x, _weights, _biases):  # Feed forward net / Multi layer perceptron
        # Defining layers
    
        layer_1 = tf.nn.relu(tf.add(tf.matmul(_x, _weights['hidden_1']), _biases['b1']))
        # Choose appropriate activation here
        layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['hidden_2']), _biases['b2']))
        # layer_2 = tf.nn.relu()
    
        # Linear activation for output
        out_layer = tf.add(tf.matmul(layer_2, _weights['out']), _biases['out'])
        return out_layer
    
    
    prediction = mlp(x, weights, biases)
    
    1 回复  |  直到 6 年前
        1
  •  3
  •   benjaminplanche    6 年前

    tf.cast() 不做就地浇铸。它返回对cast张量的引用,之后需要使用该引用;即:

    x = tf.cast(x, tf.float32)
    y = tf.cast(y, tf.float32)