代码之家  ›  专栏  ›  技术社区  ›  Ajinkya

无法将Tensorflow模型冻结到冻结(.pb)文件中

  •  1
  • Ajinkya  · 技术社区  · 6 年前

    我指的是( here )将模型冻结到.pb文件中。我的模型是CNN,用于我正在使用的文本分类( Github )链接到培训CNN的文本分类和导出形式的模型。我已经将模型训练到4 epoch,我的检查点文件夹如下所示:

    enter image description here

    我想把这个模型冻结到(.pb文件)。为此,我使用以下脚本:

    import os, argparse
    
    import tensorflow as tf
    
    # The original freeze_graph function
    # from tensorflow.python.tools.freeze_graph import freeze_graph 
    
    dir = os.path.dirname(os.path.realpath(__file__))
    
    def freeze_graph(model_dir, output_node_names):
        """Extract the sub graph defined by the output nodes and convert 
        all its variables into constant 
        Args:
            model_dir: the root folder containing the checkpoint state file
            output_node_names: a string, containing all the output node's names, 
                                comma separated
        """
        if not tf.gfile.Exists(model_dir):
            raise AssertionError(
                "Export directory doesn't exists. Please specify an export "
                "directory: %s" % model_dir)
    
        if not output_node_names:
            print("You need to supply the name of a node to --output_node_names.")
            return -1
    
        # We retrieve our checkpoint fullpath
        checkpoint = tf.train.get_checkpoint_state(model_dir)
        input_checkpoint = checkpoint.model_checkpoint_path
    
        # We precise the file fullname of our freezed graph
        absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
        output_graph = absolute_model_dir + "/frozen_model.pb"
    
        # We clear devices to allow TensorFlow to control on which device it will load operations
        clear_devices = True
    
        # We start a session using a temporary fresh Graph
        with tf.Session(graph=tf.Graph()) as sess:
            # We import the meta graph in the current default Graph
            saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
    
            # We restore the weights
            saver.restore(sess, input_checkpoint)
    
            # We use a built-in TF helper to export variables to constants
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, # The session is used to retrieve the weights
                tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes 
                output_node_names.split(",") # The output node names are used to select the usefull nodes
            ) 
    
            # Finally we serialize and dump the output graph to the filesystem
            with tf.gfile.GFile(output_graph, "wb") as f:
                f.write(output_graph_def.SerializeToString())
            print("%d ops in the final graph." % len(output_graph_def.node))
    
        return output_graph_def
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument("--model_dir", type=str, default="", help="Model folder to export")
        parser.add_argument("--output_node_names", type=str, default="", help="The name of the output nodes, comma separated.")
        args = parser.parse_args()
    
        freeze_graph(args.model_dir, args.output_node_names)
    

    我正在使用下面的参数解析器来运行上面的代码

    python3 freeze_graph.py --model_dir /Users/path_to_checkpoints/ --output_node_names softmax
    

    它在犯错误

        assert d in name_to_node_map, "%s is not in graph" % d
    AssertionError: softmax is not in graph
    

    我的模型是CNN用于文本分类。我应该在输出节点名中写入什么?在输出中生成成功的.pb文件

    2 回复  |  直到 6 年前
        1
  •  1
  •   Pratik Khadloya    6 年前

    使用下面的脚本打印张量。。。最后一个张量是输出张量。 原作者: https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc

    import argparse
    import tensorflow as tf
    
    
    def print_tensors(pb_file):
        print('Model File: {}\n'.format(pb_file))
        # read pb into graph_def
        with tf.gfile.GFile(pb_file, "rb") as f:
            graph_def = tf.GraphDef()
            graph_def.ParseFromString(f.read())
    
        # import graph_def
        with tf.Graph().as_default() as graph:
            tf.import_graph_def(graph_def)
    
        # print operations
        for op in graph.get_operations():
            print(op.name + '\t' + str(op.values()))
    
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument("--pb_file", type=str, required=True, help="Pb file")
        args = parser.parse_args()
        print_tensors(args.pb_file)
    
        2
  •  0
  •   Xiang Li    6 年前

    Tensorflow: What are the "output_node_names" for freeze_graph.py in the model_with_buckets model?

    这里有一些关于节点名和如何识别它们的答案。

    祝你好运。