不幸的是,在目前的实施中
with-device
语句不能以这种方式工作,它只能用于在cuda设备之间切换。
你还得使用
device
.cuda()
将张量移动到指定的GPU),使用如下术语:
# allocates a tensor on GPU 1
a = torch.tensor([1., 2.], device=cuda)
所以要访问
cuda:1
:
cuda = torch.device('cuda')
with torch.cuda.device(1):
# allocates a tensor on GPU 1
a = torch.tensor([1., 2.], device=cuda)
以及访问
cuda:2
:
cuda = torch.device('cuda')
with torch.cuda.device(2):
# allocates a tensor on GPU 2
a = torch.tensor([1., 2.], device=cuda)
但是张量没有
装置
参数仍将是CPU张量:
cuda = torch.device('cuda')
with torch.cuda.device(1):
# allocates a tensor on CPU
a = torch.tensor([1., 2.])
不-不幸的是,它是在当前的执行
带设备
问题。
documentation
:
cuda = torch.device('cuda') # Default CUDA device
cuda0 = torch.device('cuda:0')
cuda2 = torch.device('cuda:2') # GPU 2 (these are 0-indexed)
x = torch.tensor([1., 2.], device=cuda0)
# x.device is device(type='cuda', index=0)
y = torch.tensor([1., 2.]).cuda()
# y.device is device(type='cuda', index=0)
with torch.cuda.device(1):
# allocates a tensor on GPU 1
a = torch.tensor([1., 2.], device=cuda)
# transfers a tensor from CPU to GPU 1
b = torch.tensor([1., 2.]).cuda()
# a.device and b.device are device(type='cuda', index=1)
# You can also use ``Tensor.to`` to transfer a tensor:
b2 = torch.tensor([1., 2.]).to(device=cuda)
# b.device and b2.device are device(type='cuda', index=1)
c = a + b
# c.device is device(type='cuda', index=1)
z = x + y
# z.device is device(type='cuda', index=0)
# even within a context, you can specify the device
# (or give a GPU index to the .cuda call)
d = torch.randn(2, device=cuda2)
e = torch.randn(2).to(cuda2)
f = torch.randn(2).cuda(cuda2)
# d.device, e.device, and f.device are all device(type='cuda', index=2)