我的数据有一个星期号、帐户id和几个使用列。我想a)按帐户ID分组,b)将每周数据重新采样为每日数据,c)平均插值每日数据(将每周数据除以7),然后将所有数据重新组合在一起。我把大部分都记下来了,但是
groupby
我有点困惑。它也很慢,这让我觉得这可能不是最佳的解决方案。
Account Id year week views stats foo_col
31133 213 2017-03-05 4.0 2.0 11.0
10085 456 2017-03-12 1.0 6.0 3.0
49551 789 2017-03-26 1.0 6.0 27.0
def interpolator(mini_df):
mini_df = mini_df[cols_to_interpolate].set_index('year week')
return mini_df.resample('D').ffill().interpolate() / 7
example = list(grp)[0][1]
interpolator(example) # This works perfectly
df.groupby('Account Id').agg(interpolator) # doesn't work
df.groupby('Account Id').transform(interpolator) # doesn't work
for name,group in grp:
group = group[cols_to_interpolate].set_index('year week')
group = group.resample('D').ffill().interpolate() / 7 # doesn't work
for acc_id in df['Account Id'].unique():
mask = df.loc[df['Account Id'] == acc_id]
print(df[mask]) # doesn't work