尝试使用
tf.keras.callbacks.CSVLogger
:
import tensorflow as tf
import pandas as pd
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1, input_dim=40))
model.add(tf.keras.layers.Dense(1, 'sigmoid'))
adam_opt = tf.keras.optimizers.Adam(0.1)
model.compile(loss='bce', optimizer=adam_opt, metrics=[tf.keras.metrics.BinaryAccuracy(name="binary_accuracy", dtype=None),
tf.keras.metrics.Recall()])
train_x = tf.random.normal((50, 40))
train_y = tf.random.uniform((50, 1), maxval=2, dtype=tf.int32)
val_x = tf.random.normal((50, 40))
val_y = tf.random.uniform((50, 1), maxval=2, dtype=tf.int32)
csv_logger = tf.keras.callbacks.CSVLogger('metrics.csv')
history = model.fit(train_x, train_y, epochs=5, validation_data=(val_x, val_y), callbacks=[csv_logger])
df = pd.read_csv('/content/metrics.csv')
print(df.to_markdown())
Epoch 1/5
2/2 [==============================] - 2s 563ms/step - loss: 0.7918 - binary_accuracy: 0.4400 - recall: 0.4583 - val_loss: 0.7283 - val_binary_accuracy: 0.4200 - val_recall: 0.4815
Epoch 2/5
2/2 [==============================] - 0s 62ms/step - loss: 0.6793 - binary_accuracy: 0.5400 - recall: 0.5417 - val_loss: 0.7093 - val_binary_accuracy: 0.4200 - val_recall: 0.2593
Epoch 3/5
2/2 [==============================] - 0s 92ms/step - loss: 0.6647 - binary_accuracy: 0.6200 - recall: 0.3750 - val_loss: 0.7138 - val_binary_accuracy: 0.4400 - val_recall: 0.2222
Epoch 4/5
2/2 [==============================] - 0s 68ms/step - loss: 0.6369 - binary_accuracy: 0.6200 - recall: 0.3750 - val_loss: 0.7340 - val_binary_accuracy: 0.4400 - val_recall: 0.3704
Epoch 5/5
2/2 [==============================] - 0s 69ms/step - loss: 0.5869 - binary_accuracy: 0.6800 - recall: 0.5417 - val_loss: 0.7975 - val_binary_accuracy: 0.4800 - val_recall: 0.4444
|
纪元
|
二进制\u精度
|
丧失
|
回忆起
|
val\u binary\u精度
|
val\u损失
|
val\u召回
|
0
|
0
|
0.44
|
0.791773
|
0.458333
|
0.42
|
0.728296
|
0.481481
|
1.
|
1.
|
0.54
|
0.67928
|
0.541667
|
0.42
|
0.709347
|
0.259259
|
2.
|
2.
|
0.62
|
0.664661
|
0.375
|
0.44
|
0.713829
|
0.222222
|
3.
|
3.
|
0.62
|
0.636919
|
0.375
|
0.44
|
0.734033
|
0.37037
|
4.
|
4.
|
0.68
|
0.586907
|
0.541667
|
0.48
|
0.797542
|
0.444444
|
培训后,您可以轻松使用csv文件进行打印。