我有一个时间序列数据,从中我可以找到
trend
.现在我需要放一条回归线,它最适合趋势数据,并希望知道坡度是+ve还是-ve还是常量。
date,cpu
2018-02-10 11:52:59.342269+00:00,6.0
2018-02-10 11:53:04.006971+00:00,6.0
2018-02-10 22:35:33.438948+00:00,4.0
2018-02-10 22:35:37.905242+00:00,4.0
2018-02-11 12:01:00.663084+00:00,4.0
2018-02-11 12:01:05.136107+00:00,4.0
2018-02-11 12:31:00.228447+00:00,5.0
2018-02-11 12:31:04.689054+00:00,5.0
2018-02-11 13:01:00.362877+00:00,5.0
2018-02-11 13:01:04.824231+00:00,5.0
2018-02-11 23:42:40.304334+00:00,0.0
2018-02-11 23:44:27.357619+00:00,0.0
2018-02-12 01:38:25.012175+00:00,7.0
2018-02-12 01:53:39.721800+00:00,8.0
2018-02-12 01:53:53.310947+00:00,8.0
2018-02-12 01:56:37.657977+00:00,8.0
2018-02-12 01:56:45.133701+00:00,8.0
2018-02-12 04:49:36.028754+00:00,9.0
2018-02-12 04:49:40.097157+00:00,9.0
2018-02-12 07:20:52.148437+00:00,9.0
... ... ...
首先我要找出
趋势
在给定的数据中。下面是找出
趋势
df = pd.read_csv("test_forecast/cpu_data.csv")
df["date"] = pd.to_datetime(df["date"], format="%Y-%m-%d")
df.set_index("date", inplace=True)
df = df.resample('D').mean().interpolate(method='linear', axis=0).fillna(0)
X = df.index.strftime('%Y-%m-%d')
Y = sm.tsa.seasonal_decompose(df["cpu"]).trend.interpolate(method='linear', axis=0).fillna(0).values
所以
X
是每天的日期和
Y
是每天的趋势数据。现在我想应用线性回归来找到回归线,并找出斜率是+ve还是-ve还是常量。我尝试了下面的代码
model = sm.OLS(y,X, missing='drop')
results = model.fit()
print(results)
我希望结果变量会有一些关于因变量或自变量、斜率或截距的值。
Traceback (most recent call last):
File "/home/souvik/PycharmProjects/Pandas/test11.py", line 37, in <module>
model = sm.OLS(y,X, missing='drop')
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/regression/linear_model.py", line 817, in __init__
hasconst=hasconst, **kwargs)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/regression/linear_model.py", line 663, in __init__
weights=weights, hasconst=hasconst, **kwargs)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/regression/linear_model.py", line 179, in __init__
super(RegressionModel, self).__init__(endog, exog, **kwargs)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/base/model.py", line 212, in __init__
super(LikelihoodModel, self).__init__(endog, exog, **kwargs)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/base/model.py", line 64, in __init__
**kwargs)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/base/model.py", line 87, in _handle_data
data = handle_data(endog, exog, missing, hasconst, **kwargs)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/base/data.py", line 633, in handle_data
**kwargs)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/base/data.py", line 79, in __init__
self._handle_constant(hasconst)
File "/home/souvik/data_analysis/lib/python3.5/site-packages/statsmodels/base/data.py", line 131, in _handle_constant
ptp_ = self.exog.ptp(axis=0)
TypeError: cannot perform reduce with flexible type
我在一些网站上得到了上面的代码片段,但我无法在我的案例中应用。我做错了什么?