我有一个程序使用XGBoost来预测二进制分类我已经完成了大部分代码,但是在我希望使用用户定义的变量来预测该类的最后,我遇到了问题在共享代码之前,变量'clf'是我在执行GridSearchCV之后选择的最佳分类器:
def prob1(LIMIT_BAL, SEX, EDUCATION, MARRIAGE, AGE, PAY_0, PAY_2, PAY_3, PAY_4, PAY_5, PAY_6, BILL_AMT1, BILL_AMT2, BILL_AMT3,
BILL_AMT4, BILL_AMT5, BILL_AMT6, PAY_AMT1, PAY_AMT2, PAY_AMT3, PAY_AMT4, PAY_AMT5, PAY_AMT6):
#1) Store user entered information into a series, convert to dataframe, then transpose so that it is all in 1 row just like in training set.
lst = [LIMIT_BAL, SEX, EDUCATION, MARRIAGE, AGE, PAY_0, PAY_2, PAY_3, PAY_4, PAY_5, PAY_6, BILL_AMT1, BILL_AMT2, BILL_AMT3,
BILL_AMT4, BILL_AMT5, BILL_AMT6, PAY_AMT1, PAY_AMT2, PAY_AMT3, PAY_AMT4, PAY_AMT5, PAY_AMT6]
ud_df = pd.Series(lst)
ud_df = ud_df.to_frame()
ud_df = ud_df.T
#2) Perform the same normalization and factorization of the values as done when loading the data in above.
c = [1,2,3] # index of categorical data columns
r = list(range(0,23))
r = [x for x in r if x not in c] # get list of all other columns
df_cat = ud_df.iloc[:, [2,3,4]].copy()
df_con = ud_df.iloc[:, r].copy()
# factorize categorical data
for c in df_cat:
df_cat[c] = pd.factorize(df_cat[c])[0]
# scale continuous data
scaler = preprocessing.MinMaxScaler()
df_scaled = scaler.fit_transform(df_con)
df_scaled = pd.DataFrame(df_scaled, columns=df_con.columns)
df_final = pd.concat([df_cat, df_scaled], axis=1)
#reorder columns back to original order
cols = df.columns
df_final = df_final[cols]
#Predict
prediction = clf.predict(df_final)
#Predict Probability
probability_pred = clf.predict_probab(df_final)
return(prediction, probability_pred)
所以在定义中,用户给出了这些变量,连续变量被规范化,分类变量被分解。
运行此代码时,会出现以下错误:
prob1(50000,1, 1, 1, 37,0,0,0,0,0,0,64400,57069,57608,19394,19619,20024,2500,1815,657,1000,1000,800)
错误代码:df_con=ud_df.iloc[:,r].copy()
IndexError: positional indexers are out-of-bounds
任何帮助都很好!
下面是一个示例,展示了一行如何看起来没有任何争吵:
[50000,1,1,2,37,0,0,0,0,0,064400570695760819394,
19619200242500181565710001000800]
Edit1:修复了原始代码中的边界我在突出显示prob1(……)列时遇到此错误:
KeyError: "Index(['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0',\n 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2',\n 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1',\n 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6'],\n dtype='object') not in index"