我正在尝试对神经网络中的一个多类问题进行网格搜索。
我无法获得最佳参数,内核一直在编译。
我的代码有问题吗?请帮忙
import keras
from keras.models import Sequential
from keras.layers import Dense
# defining the baseline model:
def neural(output_dim=10,init_mode='glorot_uniform'):
model = Sequential()
model.add(Dense(output_dim=output_dim,
input_dim=2,
activation='relu',
kernel_initializer= init_mode))
model.add(Dense(output_dim=output_dim,
activation='relu',
kernel_initializer= init_mode))
model.add(Dense(output_dim=3,activation='softmax'))
# Compile model
model.compile(loss='sparse_categorical_crossentropy',
optimizer='adam',
metrics=['accuracy'])
return model
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.model_selection import GridSearchCV
estimator = KerasClassifier(build_fn=neural,
epochs=5,
batch_size=5,
verbose=0)
# define the grid search parameters
batch_size = [10, 20, 40, 60, 80, 100]
epochs = [10, 50, 100]
init_mode = ['uniform', 'lecun_uniform', 'normal', 'zero',
'glorot_normal', 'glorot_uniform', 'he_normal', 'he_uniform']
output_dim = [10, 15, 20, 25, 30,40]
param_grid = dict(batch_size=batch_size,
epochs=epochs,
output_dim=output_dim,
init_mode=init_mode)
grid = GridSearchCV(estimator=estimator,
scoring= 'accuracy',
param_grid=param_grid,
n_jobs=-1,cv=5)
grid_result = grid.fit(X_train, Y_train)
# summarize results
print("Best: %f using %s" % (grid_result.best_score_,
grid_result.best_params_))
means = grid_result.cv_results_['mean_test_score']
stds = grid_result.cv_results_['std_test_score']
params = grid_result.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print("%f (%f) with: %r" % (mean, stdev, param))