最后我提出了一个合理的贪婪算法。我首先着手将现有数据分解成一对一的片段(它们不会在任何一个域中向后弯曲)。然后,通过考虑所有可能加入的候选片段,从一端生长这些片段,并根据误差度量选择最佳片段。误差度量考虑了分段端点的接近度、端点坡度的接近度以及分段外推点的接近度。我将在下面发布相当长的代码,以防人们正在搜索这种东西。大的注释块解释了正在发生的事情。代码中使用的术语是特定于应用程序的,我在上面的旁白中对此进行了解释。
#include <iostream>
#include <fstream>
#include <sstream>
#include <vector>
#include <set>
#include <cmath>
#include <algorithm>
#include <float.h>
const double max_relative_k_error_for_local_min_duplication = 0.05;
const double max_k_to_be_considered_separate_band = 0.1; // relative to entire k extent
typedef std::pair<double,double> band_point; // first is k, second is omega
struct band_point_sorter{
bool operator()(const band_point &a, const band_point &b){
return a.first < b.first;
}
};
struct band_piece{ // a one-to-one piece
size_t n;
std::vector<band_point> points;
band_piece(size_t N, const std::vector<band_point> &pts):n(N),points(pts){}
template <class Iter>
band_piece(size_t N, Iter first, Iter last):n(N),points(first, last){
std::sort(points.begin(), points.end(), band_point_sorter());
}
};
std::ostream& operator<<(std::ostream& os, const band_piece &p){
os << "(" << p.points.front().second << "," << p.points.front().first << ")-(" << p.points.back().second << "," << p.points.back().first << ")";
return os;
}
typedef std::vector<band_point> band_cluster; // a continuous set of one-to-one pieces
typedef std::vector<size_t> band; // index of one-to-one pieces
struct k_extent{
double kmin, kmax;
k_extent(const k_extent &ext):kmin(ext.kmin),kmax(ext.kmax){}
k_extent(double KMin, double KMax):kmin(KMin),kmax(KMax){
if(kmin > kmax){ std::swap(kmin,kmax); }
}
k_extent(const std::vector<band_point> &pts):kmin(pts.front().first),kmax(pts.back().first){
if(kmin > kmax){ std::swap(kmin,kmax); }
}
void Union(const k_extent &b){
if(b.kmin < kmin){ kmin = b.kmin; }
if(b.kmax > kmax){ kmax = b.kmax; }
}
};
bool KExtentsOverlap(const k_extent &a, const k_extent &b){
return (a.kmin <= b.kmin && b.kmin <= a.kmax)
|| (a.kmin <= b.kmax && b.kmax <= a.kmax)
|| (b.kmin <= a.kmin && a.kmin <= b.kmax)
|| (b.kmin <= a.kmax && a.kmax <= b.kmax);
}
struct PieceJoiningErrorMetric{
double k_normalization;
double domega;
PieceJoiningErrorMetric(const double &min_slope, const double &omega_step):k_normalization(1/min_slope),domega(omega_step){}
double operator()(const std::vector<band_point> &p0, const std::vector<band_point> &p1){
// We have a number of criteria that we want:
// 0 The nearest endpoints of the pieces should be close in k.
// 1 The slopes at the near end points should be close.
// 2 The linear extension from the near ends of the pieces should almost match.
// Criterion 2 is the most difficult to quantify:
// If we shoot a ray out from the endpoint of one segment, the point on the
// ray nearest the other piece's endpoint should not be the ray origin (the
// nearest point on the ray to the other endpoint should be at a positive
// ray coordinate). We do this for both segment endpoints, and take the larger
// of the two minimum distances.
double dk0 = 0, dk1 = 0, dw0 = 0, dw1 = 0, slope0, slope1;
double slope0_2; // slopes of next neighboring points
double slope1_2;
double k0, k1, k_diff, w0, w1;
if(p1.front().first > p0.back().first){ // p1 entirely after p0
k0 = p0.back().first; w0 = p0.back().second;
if(p0.size() > 1){
dk0 = p0.back().first - p0[p0.size()-2].first;
dw0 = p0.back().second - p0[p0.size()-2].second;
slope0 = dw0/dk0;
if(p1.size() < 2){
slope1 = slope0;
}
if(p0.size() > 4){ // give extra space since for too short segments, this is meaningless
slope0_2 = (p0[p0.size()-2].second - p0[p0.size()-3].second)/(p0[p0.size()-2].first - p0[p0.size()-3].first);
}
}
k1 = p1.front().first; w1 = p1.front().second;
if(p1.size() > 1){
dk1 = p1.front().first - p1[1].first;
dw1 = p1.front().second - p1[1].second;
slope1 = dw1/dk1;
if(p0.size() < 2){
slope0 = slope1;
}
if(p1.size() > 4){ // give extra space since for too short segments, this is meaningless
slope1_2 = (p1[1].second - p1[2].second)/(p1[1].first - p1[2].first);
}
}
k_diff = k1 - k0;
}else if(p0.front().first > p1.back().first){ // p0 entirely after p1
k0 = p0.front().first; w0 = p0.front().second;
if(p0.size() > 1){
dk0 = p0.front().first - p0[1].first;
dw0 = p0.front().second - p0[1].second;
slope0 = dw0/dk0;
if(p1.size() < 2){
slope1 = slope0;
}
if(p0.size() > 4){ // give extra space since for too short segments, this is meaningless
slope0_2 = (p0[1].second - p0[2].second)/(p0[1].first - p0[2].first);
}
}
k1 = p1.back().first; w1 = p1.back().second;
if(p1.size() > 1){
dk1 = p1.back().first - p1[p1.size()-2].first;
dw1 = p1.back().second - p1[p1.size()-2].second;
slope1 = dw1/dk1;
if(p0.size() < 2){
slope0 = slope1;
}
if(p1.size() > 4){ // give extra space since for too short segments, this is meaningless
slope1_2 = (p1[p1.size()-2].second - p1[p1.size()-3].second)/(p1[p1.size()-2].first - p1[p1.size()-3].first);
}
}
k_diff = k0 - k1;
}else{
return DBL_MAX;
}
k0 *= k_normalization;
k1 *= k_normalization;
dk0 *= k_normalization;
dk1 *= k_normalization;
k_diff *= k_normalization;
if(p0.size() < 2 && p1.size() < 2){
return k_diff*k_diff;
}
slope0 /= k_normalization;
slope1 /= k_normalization;
// max abs value for any slope here is 1
//// Perform the ray shooting
// Suppose we start at k0,w0, the ray is
// (k0,w0) + t*(dk0,dw0)
// Distance^2 to k1 is
// (k0-k1+t*dk0)^2 + (w0-w1+t*dw0)^2
// Minimize by taking derivative w.r.t. t:
// t = [ (k1-k0)*dk0 + (w1-w0)*dw0 ] / (dk0*dk0 + dw0*dw0);
double t, x;
t = ((k1-k0)*dk0 + (w1-w0)*dw0) * (dk0*dk0 + dw0*dw0); if(t < 0){ return DBL_MAX; }
double dist2_01 = 0;
x = k0-k1+t*dk0;
dist2_01 += x*x;
x = w0-w1+t*dw0;
dist2_01 += x*x;
t = ((k0-k1)*dk1 + (w0-w1)*dw1) * (dk1*dk1 + dw1*dw1); if(t < 0){ return DBL_MAX; }
double dist2_10 = 0;
x = k1-k0+t*dk1;
dist2_10 += x*x;
x = w1-w0+t*dw1;
dist2_10 += x*x;
//double k_scale = (dk1 > dk0) ? dk1 : dk0;
//double k_ext0 = p0.back().first - p0.front().first;
//double k_ext1 = p1.back().first - p1.front().first;
//double k_scale = (k_ext0 < k_ext1) ? k_ext0 : k_ext1;
double w_diff = fabs(w1-w0);
// We take the larger of the ray shooting distances
double dist2 = (dist2_01 > dist2_10) ? dist2_01 : dist2_10;
// We take the difference of slopes here and multiply by k_diff to get something in omega range
// Further, we take the next neighboring slopes in case the slopes are corrupted due to being near a degeneracy.
double dslope = fabs(slope0-slope1) * k_diff;
if(p0.size() > 4 && p1.size() > 4){
double dslope_2 = fabs(slope0_2-slope1_2) * k_diff;
if(dslope_2 < dslope){ dslope = dslope_2; }
}
// scale oemga difference by slope so that for shallow slopes, we really want to get
// a good frequency match, also scales from omega range to k range
double max_slope = (std::abs(slope0) > std::abs(slope1)) ? slope0 : slope1;
w_diff /= max_slope;
// std::cerr << " k_diff = " << k_diff << ", w_diff = " << w_diff << ", slope0 = " << slope0 << ", slope1 = " << slope1 << ", dist2 = " << dist2 << std::endl;
return k_diff*k_diff + w_diff*w_diff + dslope*dslope + dist2;
}
};
int main(int argc, char *argv[]){
std::vector<double> freqs;
std::vector<std::vector<double> > raw_bands;
double max_k_extent = -DBL_MAX;
double min_k_extent = DBL_MAX;
double max_freq_extent = -DBL_MAX;
double min_freq_extent = DBL_MAX;
size_t max_num_k_per_omega = 0;
double min_slope = DBL_MAX; // dk/dw
std::ifstream in(argv[1]);
if(!in.is_open()){
std::cerr << "Could not open file: " << argv[1] << std::endl;
return 1;
}
std::string line;
while(getline(in, line)){
std::istringstream line_in(line);
double val;
line_in >> val;
freqs.push_back(val);
if(val < min_freq_extent){ min_freq_extent = val; }
if(val > max_freq_extent){ max_freq_extent = val; }
raw_bands.push_back(std::vector<double>());
while(line_in){
double val;
if(line_in >> val){
raw_bands.back().push_back(val);
if(val < min_k_extent){ min_k_extent = val; }
if(val > max_k_extent){ max_k_extent = val; }
}
}
if(raw_bands.back().size() > max_num_k_per_omega){ max_num_k_per_omega = raw_bands.back().size(); }
}
//// Split into one-to-one pieces
// A one-to-one piece is a connected subset of an omega-k band which is
// one-to-one with respect to omega and k.
// For a given n, the set of n-th smallest k values as a function of a
// omega is disjoint on the omega domain. We call a single connected part
// of the omega domain for a single set of n-th smallest k values an
// n-shadow, and the connected subset of the omega-k band an n-cluster.
// n-clusters are separated from one another by the bandgaps, so they are
// easy to distinguish.
// Each n-cluster is itself a conjunction of several one-to-one pieces.
// Boundaries between one-to-one pieces are defined by local minima or
// maxima on the omega domain, or by large jump discontinuities (jumps
// in k). We need to set a threshold beyond which jumps are considered
// one-to-one piece boundaries.
//
// For each band we first construct the n-clusters, then divide them into
// one-to-one pieces.
std::vector<band_piece> all_pieces;
for(size_t n = 0; n < max_num_k_per_omega; ++n){
// n is the n-th smallest k we are considering
// First collect all the clusters
std::vector<band_cluster> clusters;
size_t w = 0;
while(raw_bands[w].size() <= n){ ++w; }
for(; w < raw_bands.size(); ++w){
if(raw_bands[w].size() > n){
// If we are in a gap, there is nothing to do, otherwise...
if(0 == w || raw_bands[w-1].size() <= n){
// Encountering more k's, time to start a new cluster
clusters.push_back(band_cluster());
clusters.back().push_back(band_point(raw_bands[w][n], freqs[w]));
}else if(raw_bands[w-1].size() > n){
// We are within a cluster
clusters.back().push_back(band_point(raw_bands[w][n], freqs[w]));
}
}
}
// Now break each cluster into pieces
for(size_t c = 0; c < clusters.size(); ++c){
const band_cluster &cur_cluster = clusters[c];
band_cluster::const_iterator last_cut_loc = cur_cluster.begin();
// We skip first and last of each cluster since we can not cut adjacent to them
for(size_t w = 1; w < cur_cluster.size()-1; ++w){
double slope1 = fabs((cur_cluster[w].first - cur_cluster[w-1].first)/(cur_cluster[w].second-cur_cluster[w-1].second));
if(slope1 < min_slope){ min_slope = slope1; }
if(cur_cluster[w].first < cur_cluster[w-1].first && cur_cluster[w].first < cur_cluster[w+1].first){
// Check for local minimum
if(w > 1){
if(w >= cur_cluster.size()-2){
// can only get slope on the left, award to the left
if(last_cut_loc == cur_cluster.begin()+w+1){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w+1)); // note the +1, duplicates the extremum point
last_cut_loc = cur_cluster.begin()+w+2; ++w;
}else{
// Can get slope on both sides
double left_k_extrapolation = (cur_cluster[w-1].first-cur_cluster[w-2].first) * (cur_cluster[w].second-cur_cluster[w-2].second)/(cur_cluster[w-1].second-cur_cluster[w-2].second) + cur_cluster[w-2].first;
double right_k_extrapolation = (cur_cluster[w+1].first-cur_cluster[w+2].first) * (cur_cluster[w].second-cur_cluster[w+2].second)/(cur_cluster[w+1].second-cur_cluster[w+2].second) + cur_cluster[w+2].first;
// errors (units of k)
double left_l1_err = fabs( left_k_extrapolation-cur_cluster[w].first);
double right_l1_err = fabs(right_k_extrapolation-cur_cluster[w].first);
// Determine if the minimum should be copied
bool dup_min = false;
{ // might prefer to use a ray shooting criterion
double kext = fabs(all_pieces.back().points.front().first - all_pieces.back().points.back().first);
if(left_l1_err/kext < max_relative_k_error_for_local_min_duplication && right_l1_err/kext < max_relative_k_error_for_local_min_duplication){
dup_min = true;
}
}
if(left_l1_err < right_l1_err){
if(last_cut_loc == cur_cluster.begin()+w+1){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w+1));
if(dup_min){
last_cut_loc = cur_cluster.begin()+w;
}else{
last_cut_loc = cur_cluster.begin()+w+1; ++w;
}
}else{
if(dup_min){
if(last_cut_loc == cur_cluster.begin()+w+1){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w+1));
}else{
if(last_cut_loc == cur_cluster.begin()+w){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w));
}
last_cut_loc = cur_cluster.begin()+w;
}
}
}else if(w < cur_cluster.size()-2){ // && w <= 1
// can only get slope on the right, award to the right
if(last_cut_loc == cur_cluster.begin()+w){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w));
last_cut_loc = cur_cluster.begin()+w;
}else{
// by default give to the right
if(last_cut_loc == cur_cluster.begin()+w){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w));
last_cut_loc = cur_cluster.begin()+w;
}
// Determine whether to duplicate the minimum point
}else if(cur_cluster[w].first > cur_cluster[w-1].first && cur_cluster[w].first > cur_cluster[w+1].first){
// Check for local maximum
// Which side gets the maximum point is deterined by slope matching
if(w > 1){
if(w >= cur_cluster.size()-2){
// can only get slope on the left, award to the left
if(last_cut_loc == cur_cluster.begin()+w+1){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w+1));
last_cut_loc = cur_cluster.begin()+w+1; ++w;
}else{
// Can get slope on both sides
double left_k_extrapolation = (cur_cluster[w-1].first-cur_cluster[w-2].first) * (cur_cluster[w].second-cur_cluster[w-2].second)/(cur_cluster[w-1].second-cur_cluster[w-2].second) + cur_cluster[w-2].first;
double right_k_extrapolation = (cur_cluster[w+1].first-cur_cluster[w+2].first) * (cur_cluster[w].second-cur_cluster[w+2].second)/(cur_cluster[w+1].second-cur_cluster[w+2].second) + cur_cluster[w+2].first;
double left_l1_err = fabs( left_k_extrapolation-cur_cluster[w].first);
double right_l1_err = fabs(right_k_extrapolation-cur_cluster[w].first);
if(left_l1_err < right_l1_err){
if(last_cut_loc == cur_cluster.begin()+w+1){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w+1));
last_cut_loc = cur_cluster.begin()+w+1; ++w;
}else{
if(last_cut_loc == cur_cluster.begin()+w){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w));
last_cut_loc = cur_cluster.begin()+w;
}
}
}else if(w < cur_cluster.size()-2){ // && w <= 1
// can only get slope on the right, award to the right
if(last_cut_loc == cur_cluster.begin()+w){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w)); // note the +1, duplicates the extremum point
last_cut_loc = cur_cluster.begin()+w;
}else{
// by default give to the right
if(last_cut_loc == cur_cluster.begin()+w){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w)); // note the +1, duplicates the extremum point
last_cut_loc = cur_cluster.begin()+w;
}
}else if(w > 1){
// Check for jump discontinuity
double diff0 = cur_cluster[w-1].first-cur_cluster[w-2].first;
double diff1 = cur_cluster[w ].first-cur_cluster[w-1].first;
double diff2 = cur_cluster[w+1].first-cur_cluster[w ].first;
if((diff0 > 0 && diff1 > 0 && diff2 > 0) || (diff0 < 0 && diff1 < 0 && diff2 < 0)){
diff0 = fabs(diff0);
diff1 = fabs(diff1);
diff2 = fabs(diff2);
if(diff1 > diff2 && diff1 > diff0){
const double &larger_neighboring_diff = (diff0 > diff2) ? diff0 : diff2;
if(diff1 > 5.0 * larger_neighboring_diff){
if(last_cut_loc == cur_cluster.begin()+w){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.begin()+w));
last_cut_loc = cur_cluster.begin()+w;
}
}
}
}
}
if(last_cut_loc == cur_cluster.end()){ continue; }
all_pieces.push_back(band_piece(n, last_cut_loc, cur_cluster.end()));
}
}
/*
// Output all pieces to check them
for(size_t i = 0; i < all_pieces.size(); ++i){
std::cout << "Piece " << i << ":" << std::endl;
for(size_t j = 0; j < all_pieces[i].points.size(); ++j){
std::cout << " " << all_pieces[i].points[j].first << "\t" << all_pieces[i].points[j].second << std::endl;
}
}
*/
/*
size_t max_piece_size = 0;
size_t max_piece_ind = 0;
for(size_t b = 0; b < all_pieces.size(); ++b){
if(all_pieces[b].points.size() > max_piece_size){ max_piece_size = all_pieces[b].points.size(); }
}
std::cout << "# " << all_pieces.size() << " pieces" << std::endl;
for(size_t i = 0; i < max_piece_size; ++i){
for(size_t b = 0; b < all_pieces.size(); ++b){
if(all_pieces[b].points.size() <= i){
std::cout << "\t" << all_pieces[b].points.back().first << "\t" << all_pieces[b].points.back().second;
}else{
std::cout << "\t" << all_pieces[b].points[i].first << "\t" << all_pieces[b].points[i].second;
}
}
std::cout << std::endl;
}
return 0;
*/
//// One-to-one piece connection
// The set of one-to-one pieces must now be joined into bands. Note that
// a band must stretch from min_k_extent to max_k_extent (thereabouts) and
// so will rarely consist of a single one-to-one piece (unless it is a
// monotonically varying band).
// Invariants:
// 0 The number of pieces from all 0-clusters determines the number of
// bands present.
// 1 A piece from an n-cluster cannot be joined to another piece from
// an n-cluster (cannot join same n's).
// 2 All pieces from a single n-cluster must lie in different bands.
// 3 A piece cannot be joined to another piece whose k-extents overlap.
// 4 A junction can only be incident on an even number of pieces. This
// is usually 2 unless there is a degeneracy or cross over.
// 5 A piece from an n-cluster can only be joined to a piece from an
// n+k-cluster, where k is -M to M, where M is the multiplicity of
// the junction if there is a degeneracy, otherwise it is 1. k not 0.
//
// We shall proceed as follows. We will try to grow the bands from min k
// to max k, starting with seed pieces from the 0-clusters. At the large k
// tip of every partial band we will consider all possible pieces to join
// to it. This can be done efficiently by maintaining the set of k-extents
// for each piece. The best possible piece to use will be the minimizer of
// an error metric.
// The error metric considers both nearness of piece endpoints as well as
// slope continuity. In all cases, we work in normalized space in which
// the extent in group velocity is unity (k and omega are scaled similarly)
const size_t npieces = all_pieces.size();
std::vector<k_extent> piece_k_extents;
std::vector<band> partial_bands;
std::vector<k_extent> partial_band_k_extents;
std::set<size_t> remaining_pieces;
// Initialize our structures
piece_k_extents.reserve(npieces);
for(size_t i = 0; i < all_pieces.size(); ++i){
piece_k_extents.push_back(k_extent(all_pieces[i].points));
if(0 == all_pieces[i].n){ // use Invariants 0 and 2
if(all_pieces[i].points.front().first-min_k_extent < max_k_to_be_considered_separate_band * (max_k_extent-min_k_extent)){
partial_bands.push_back(band()); partial_bands.back().push_back(i);
partial_band_k_extents.push_back(piece_k_extents.back());
}else{
remaining_pieces.insert(i);
}
}else{
remaining_pieces.insert(i);
}
}
// Perform the growing
PieceJoiningErrorMetric error_metric(min_slope, freqs[1]-freqs[0]);
bool made_progress = true;
size_t npass = 0;
while(!remaining_pieces.empty() && made_progress){
// std::cerr << "Pass " << npass << std::endl;
made_progress = false;
// Try to grow each band one piece at a time
for(size_t b = 0; b < partial_bands.size(); ++b){
band &cur_band = partial_bands[b];
std::set<size_t> candidate_pieces;
for(std::set<size_t>::const_iterator i = remaining_pieces.begin(); i != remaining_pieces.end(); ++i){
if(*i != all_pieces[cur_band.back()].n){ // use Invariant 1
if(!KExtentsOverlap(piece_k_extents[*i], partial_band_k_extents[b])){ // use Invariant 3
candidate_pieces.insert(*i);
}
}
}
if(candidate_pieces.empty()){ continue; }
// Find best piece to use
double error = DBL_MAX;
size_t best_piece_so_far = (size_t)-1;
// std::cerr << " Considering joining " << cur_band.back() << " " << all_pieces[cur_band.back()] << " with:" << std::endl;
for(std::set<size_t>::const_iterator i = candidate_pieces.begin(); i != candidate_pieces.end(); ++i){
// std::cerr << " " << *i << " " << all_pieces[*i] << std::endl;
double new_error = error_metric(all_pieces[cur_band.back()].points, all_pieces[*i].points);
if(new_error < error){
error = new_error;
best_piece_so_far = *i;
}
}
if((size_t)-1 == best_piece_so_far){
// std::cerr << " Could not find a good candidate" << std::endl;
continue;
}
// std::cerr << " Joining with " << best_piece_so_far << " " << all_pieces[best_piece_so_far] << std::endl;
// Join the piece
partial_band_k_extents[b].Union(piece_k_extents[best_piece_so_far]);
cur_band.push_back(best_piece_so_far);
remaining_pieces.erase(remaining_pieces.find(best_piece_so_far));
made_progress = true;
}
++npass;
}
/*
// Output all bands
for(size_t b = 0; b < partial_bands.size(); ++b){
std::cout << "Band " << b << ":" << std::endl;
for(size_t i = 0; i < partial_bands[b].size(); ++i){
const band_piece &cur_piece = all_pieces[partial_bands[b][i]];
for(size_t j = 0; j < cur_piece.points.size(); ++j){
std::cout << " " << cur_piece.points[j].first << "\t" << cur_piece.points[j].second << std::endl;
}
}
}
*/
size_t max_band_size = 0;
std::vector<std::vector<band_point> > final_bands(partial_bands.size());
for(size_t b = 0; b < partial_bands.size(); ++b){
for(size_t i = 0; i < partial_bands[b].size(); ++i){
final_bands[b].insert(final_bands[b].end(), all_pieces[partial_bands[b][i]].points.begin(), all_pieces[partial_bands[b][i]].points.end());
}
if(final_bands[b].size() > max_band_size){ max_band_size = final_bands[b].size(); }
}
for(size_t i = 0; i < max_band_size; ++i){
for(size_t b = 0; b < final_bands.size(); ++b){
if(final_bands[b].size() <= i){
std::cout << "\t" << final_bands[b].back().first << "\t" << final_bands[b].back().second;
}else{
std::cout << "\t" << final_bands[b][i].first << "\t" << final_bands[b][i].second;
}
}
std::cout << std::endl;
}
std::cout << "Unused pieces:" << std::endl;
for(std::set<size_t>::const_iterator i = remaining_pieces.begin(); i != remaining_pieces.end(); ++i){
std::cout << "Piece " << *i << std::endl;
const band_piece &cur_piece = all_pieces[*i];
for(size_t j = 0; j < cur_piece.points.size(); ++j){
std::cout << " " << cur_piece.points[j].first << "\t" << cur_piece.points[j].second << std::endl;
}
}
return 0;
}