你的代码似乎没问题。
scoring="neg_mean_squared_error"
对于两者
cross_val_score
和
GridSearchCV
,我也会这样做,以确保一切正常运行,但测试这一点的唯一方法是删除其中一个,然后查看结果是否发生变化。
SelectKBest
是一种很好的方法,但您也可以使用
SelectFromModel
或者你能找到的其他方法
here
最后,为了获得
最佳参数
import ...
pipeline = Pipeline([('normalize', Normalizer()),
('kbest', SelectKBest(f_classif)),
('regressor', KNeighborsRegressor())])
# try knn__n_neighbors from 1 to 20, and feature count from 1 to len(features)
parameters = {'kbest__k': list(range(1, X.shape[1]+1)),
'regressor__n_neighbors': list(range(1,21))}
# changes here
grid = GridSearchCV(pipeline, parameters, cv=10, scoring="neg_mean_squared_error")
grid.fit(X, y)
# get the best parameters and the best estimator
print("the best estimator is \n {} ".format(grid.best_estimator_))
print("the best parameters are \n {}".format(grid.best_params_))
# get the features scores rounded in 2 decimals
pip_steps = grid.best_estimator_.named_steps['kbest']
features_scores = ['%.2f' % elem for elem in pip_steps.scores_ ]
print("the features scores are \n {}".format(features_scores))
feature_scores_pvalues = ['%.3f' % elem for elem in pip_steps.pvalues_]
print("the feature_pvalues is \n {} ".format(feature_scores_pvalues))
# create a tuple of feature names, scores and pvalues, name it "features_selected_tuple"
featurelist = ['age', 'weight']
features_selected_tuple=[(featurelist[i], features_scores[i],
feature_scores_pvalues[i]) for i in pip_steps.get_support(indices=True)]
# Sort the tuple by score, in reverse order
features_selected_tuple = sorted(features_selected_tuple, key=lambda
feature: float(feature[1]) , reverse=True)
# Print
print 'Selected Features, Scores, P-Values'
print features_selected_tuple
使用我的数据的结果:
the best estimator is
Pipeline(steps=[('normalize', Normalizer(copy=True, norm='l2')), ('kbest', SelectKBest(k=2, score_func=<function f_classif at 0x0000000004ABC898>)), ('regressor', KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=18, p=2,
weights='uniform'))])
the best parameters are
{'kbest__k': 2, 'regressor__n_neighbors': 18}
the features scores are
['8.98', '8.80']
the feature_pvalues is
['0.000', '0.000']
Selected Features, Scores, P-Values
[('correlation', '8.98', '0.000'), ('gene', '8.80', '0.000')]