我正在尝试用参差不齐的张量构建一个LSTM(目标是有一个动作识别模型,可以接受和预测不同长度的动作)。(使用tensorflow 2.6)
输入的形状如下:<tf。张量:shape=(3,),dtype=int64,numpy=数组([30,10,1662],dtype=int64)>,因此N序列共10组1662个点。
模型如下所示:
model = tf.keras.Sequential([
tf.keras.layers.InputLayer(input_shape=[None, 1662], ragged=True),
tf.keras.layers.LSTM(64, return_sequences = True, activation = 'tanh'),
tf.keras.layers.LSTM(128, return_sequences = True, activation = 'tanh'),
tf.keras.layers.LSTM(64, return_sequences = True, activation = 'tanh'),
tf.keras.layers.TimeDistributed(Dense(64, activation = 'relu')),
tf.keras.layers.TimeDistributed(Dense(32, activation = 'relu')),
tf.keras.layers.TimeDistributed(Dense(1, activation = 'softmax')),
])
必须使用密集的时间分布层来匹配参差不齐张量的形状,因此输出也是3D的。
编译和拟合:
model.compile(optimizer = 'Adam', loss = 'categorical_crossentropy', metrics = ['categorical_accuracy'])
model.fit(X_train, y_train, epochs = 4000, callbacks = callb)
此代码引发错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_23244\613233899.py in <module>
1 #problem might be due to the timesdistributed that takes in 3d vectors, while the y labels are 2d ones.. look into that
2 callb = myCallback()
----> 3 model.fit(X_train, y_train, epochs = 4000, callbacks = callb)
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1191 _r=1):
1192 callbacks.on_train_batch_begin(step)
-> 1193 tmp_logs = self.train_function(iterator)
1194 if data_handler.should_sync:
1195 context.async_wait()
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
883
884 with OptionalXlaContext(self._jit_compile):
--> 885 result = self._call(*args, **kwds)
886
887 new_tracing_count = self.experimental_get_tracing_count()
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
931 # This is the first call of __call__, so we have to initialize.
932 initializers = []
--> 933 self._initialize(args, kwds, add_initializers_to=initializers)
934 finally:
935 # At this point we know that the initialization is complete (or less
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
758 self._concrete_stateful_fn = (
759 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 760 *args, **kwds))
761
762 def invalid_creator_scope(*unused_args, **unused_kwds):
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
3064 args, kwargs = None, None
3065 with self._lock:
-> 3066 graph_function, _ = self._maybe_define_function(args, kwargs)
3067 return graph_function
3068
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)
3461
3462 self._function_cache.missed.add(call_context_key)
-> 3463 graph_function = self._create_graph_function(args, kwargs)
3464 self._function_cache.primary[cache_key] = graph_function
3465
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
3306 arg_names=arg_names,
3307 override_flat_arg_shapes=override_flat_arg_shapes,
-> 3308 capture_by_value=self._capture_by_value),
3309 self._function_attributes,
3310 function_spec=self.function_spec,
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes, acd_record_initial_resource_uses)
1005 _, original_func = tf_decorator.unwrap(python_func)
1006
-> 1007 func_outputs = python_func(*func_args, **func_kwargs)
1008
1009 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
666 # the function a weak reference to itself to avoid a reference cycle.
667 with OptionalXlaContext(compile_with_xla):
--> 668 out = weak_wrapped_fn().__wrapped__(*args, **kwds)
669 return out
670
~\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
992 except Exception as e: # pylint:disable=broad-except
993 if hasattr(e, "ag_error_metadata"):
--> 994 raise e.ag_error_metadata.to_exception(e)
995 else:
996 raise
TypeError: in user code:
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\engine\training.py:862 train_function *
return step_function(self, iterator)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\engine\training.py:852 step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1286 run
return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2849 call_for_each_replica
return self._call_for_each_replica(fn, args, kwargs)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:3632 _call_for_each_replica
return fn(*args, **kwargs)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\engine\training.py:845 run_step **
outputs = model.train_step(data)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\engine\training.py:807 train_step
self.compiled_metrics.update_state(y, y_pred, sample_weight)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\engine\compile_utils.py:460 update_state
metric_obj.update_state(y_t, y_p, sample_weight=mask)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\utils\metrics_utils.py:88 decorated
update_op = update_state_fn(*args, **kwargs)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\metrics.py:171 update_state_fn
return ag_update_state(*args, **kwargs)
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\metrics.py:670 update_state **
[y_true, y_pred], sample_weight))
C:\Users\cocco\anaconda3\envs\mediapipe1\lib\site-packages\tensorflow\python\keras\utils\metrics_utils.py:826 ragged_assert_compatible_and_get_flat_values
raise TypeError('One of the inputs does not have acceptable types.')
TypeError: One of the inputs does not have acceptable types.
我只找到了
this
但这并没有多大帮助。
我曾尝试有选择地删除一些输入,以查看数据是否有问题,但事实并非如此。这些数据是使用mediapipe创建的运动跟踪的地标。