2016年,我使用下面的代码运行了一个Lasso回归模型:
#Import required packages
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.pylab as plt
import matplotlib.pyplot as plp
import seaborn as sns
import statsmodels.formula.api as smf
from scipy import stats
from sklearn.cross_validation import train_test_split
from sklearn.linear_model import LassoLarsCV
# split data into train and test sets
pred_train, pred_test, tar_train, tar_test = train_test_split(predictors, target, test_size=.4, random_state=123)
#%
# specify the lasso regression model
model=LassoLarsCV(cv=10, precompute=False).fit(pred_train,tar_train)
#%
# print variable names and regression coefficients
dict(zip(predictors.columns, model.coef_))
#regcoef.to_csv('variable+regresscoef.csv')
#%%
# plot coefficient progression
m_log_alphas = -np.log10(model.alphas_)
ax = plt.gca()
plt.plot(m_log_alphas, model.coef_path_.T)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',
label='alpha CV')
plt.ylabel('Regression Coefficients')
plt.xlabel('-log(alpha)')
plt.title('Regression Coefficients Progression for Lasso Paths')
#%
# plot mean square error for each fold
m_log_alphascv = -np.log10(model.cv_alphas_)
plt.figure()
plt.plot(m_log_alphascv, model.cv_mse_path_, ':')
plt.plot(m_log_alphascv, model.cv_mse_path_.mean(axis=-1), 'k',
label='Average across the folds', linewidth=2)
plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k',
label='alpha CV')
plt.legend()
plt.xlabel('-log(alpha)')
plt.ylabel('Mean squared error')
plt.title('Mean squared error on each fold')
#%
# MSE from training and test data
from sklearn.metrics import mean_squared_error
train_error = mean_squared_error(tar_train, model.predict(pred_train))
test_error = mean_squared_error(tar_test, model.predict(pred_test))
print ('training data MSE')
print(train_error)
print ('test data MSE')
print(test_error)
#%
# R-square from training and test data
rsquared_train=model.score(pred_train,tar_train)
rsquared_test=model.score(pred_test,tar_test)
print ('training data R-square')
print(rsquared_train)
print ('test data R-square')
print(rsquared_test)
现在我想再次运行它并收到以下警告:
DeprecationWarning:版本0.18中已弃用此模块
有利于所有重构的模型选择模块
类和函数被移动。
我怎样才能用
model_selection
?