代码之家  ›  专栏  ›  技术社区  ›  Conor Neilson

基于最短地理距离的数据帧匹配

  •  6
  • Conor Neilson  · 技术社区  · 7 年前

    我有两个数据帧,都包含纬度和经度坐标。第一个数据帧是对事件的观察,其中记录了位置和时间。第二个数据帧是地理特征,其中记录了特征的位置和信息。

    my_df_1 <- structure(list(START_LAT = c(-33.15, -35.6, -34.08333, -34.13333, 
    -34.31667, -47.38333, -47.53333, -34.08333, -47.38333, -47.15
    ), START_LONG = c(163, 165.18333, 162.88333, 162.58333, 162.76667, 
    148.98333, 148.66667, 162.9, 148.98333, 148.71667)), row.names = c(1175L, 
    528L, 1328L, 870L, 672L, 707L, 506L, 981L, 756L, 210L), class = "data.frame", .Names = c("START_LAT", 
    "START_LONG"))
    
    my_df_2 <- structure(list(latitude = c(-42.7984, -34.195, -49.81, -35.417, 
    -28.1487, -44.657, -42.7898, -36.245, -39.1335, -31.8482), longitude = c(179.9874, 
    179.526, -176.68, 178.765, -168.0314, 174.695, -179.9873, 177.7873, 
    -170.0583, 173.2424), depth_top = c(935L, 2204L, 869L, 1973L, 
    4750L, 555L, 894L, 1500L, 4299L, 1303L)), row.names = c(580L, 
    1306L, 926L, 1102L, 60L, 1481L, 574L, 454L, 1168L, 144L), class = "data.frame", .Names = c("latitude", 
    "longitude", "depth_top"))
    

    我需要做的是,对于df1中的每个观察,我需要找出df2中哪个特性在地理上最接近。理想情况下,我会在df1后面添加一个新列,其中每一行都是与df2最接近的特征。

    How to assign several names to lat-lon observations ,但无法找出如何将其与我的数据匹配

    真正的数据帧有1000行,这就是为什么我不能手动执行此操作

    2 回复  |  直到 7 年前
        1
  •  4
  •   www    7 年前

    使用的解决方案 st_distance sf my_df_final

    # Load packages
    library(tidyverse)
    library(sp)
    library(sf)
    
    # Create ID for my_df_1 and my_df_2 based on row id
    # This step is not required, just help me to better distinguish each point
    my_df_1 <- my_df_1 %>% mutate(ID1 = row.names(.))
    my_df_2 <- my_df_2 %>% mutate(ID2 = row.names(.))
    
    # Create spatial point data frame
    my_df_1_sp <- my_df_1
    coordinates(my_df_1_sp) <- ~START_LONG + START_LAT
    
    my_df_2_sp <- my_df_2
    coordinates(my_df_2_sp) <- ~longitude + latitude
    
    # Convert to simple feature
    my_df_1_sf <- st_as_sf(my_df_1_sp)
    my_df_2_sf <- st_as_sf(my_df_2_sp)
    
    # Set projection based on the epsg code
    st_crs(my_df_1_sf) <- 4326
    st_crs(my_df_2_sf) <- 4326
    
    # Calculate the distance
    m_dist <- st_distance(my_df_1_sf, my_df_2_sf)
    
    # Filter for the nearest
    near_index <- apply(m_dist, 1, order)[1, ]
    
    # Based on the index in near_index to select the rows in my_df_2
    # Combine with my_df_1
    my_df_final <- cbind(my_df_1, my_df_2[near_index, ])
    
        2
  •  2
  •   Steven Beaupré    7 年前

    基于此 answer 你可以做的

    library(geosphere)
    
    mat <- distm(my_df_1[2:1], my_df_2[2:1], fun = distVincentyEllipsoid)
    cbind(my_df_1, my_df_2[max.col(-mat),])
    

    其中给出:

    #     START_LAT START_LONG  ID1 latitude longitude depth_top  ID2
    #10   -33.15000   163.0000 1175 -31.8482  173.2424      1303  144
    #10.1 -35.60000   165.1833  528 -31.8482  173.2424      1303  144
    #10.2 -34.08333   162.8833 1328 -31.8482  173.2424      1303  144
    #10.3 -34.13333   162.5833  870 -31.8482  173.2424      1303  144
    #10.4 -34.31667   162.7667  672 -31.8482  173.2424      1303  144
    #6    -47.38333   148.9833  707 -44.6570  174.6950       555 1481
    #6.1  -47.53333   148.6667  506 -44.6570  174.6950       555 1481
    #10.5 -34.08333   162.9000  981 -31.8482  173.2424      1303  144
    #6.2  -47.38333   148.9833  756 -44.6570  174.6950       555 1481
    #6.3  -47.15000   148.7167  210 -44.6570  174.6950       555 1481