演示:
http://jsfiddle.net/m1erickson/eZHu7/
线-矩形碰撞异常复杂!
此函数用于测试线段是否与矩形的4条边中的任何一条相交:
// test line vs the 4 rectangle lines
function lineRectIntersects(line,rect){
// p=line startpoint, p2=line endpoint
var p={x:line.x1,y:line.y1};
var p2={x:line.x2,y:line.y2};
// top rect line
var q={x:rect.x,y:rect.y};
var q2={x:rect.x+rect.width,y:rect.y};
if(doLineSegmentsIntersect(p,p2,q,q2)){ return true; }
// right rect line
var q=q2;
var q2={x:rect.x+rect.width,y:rect.y+rect.height};
if(doLineSegmentsIntersect(p,p2,q,q2)){ return true; }
// bottom rect line
var q=q2;
var q2={x:rect.x,y:rect.y+rect.height};
if(doLineSegmentsIntersect(p,p2,q,q2)){ return true; }
// left rect line
var q=q2;
var q2={x:rect.x,y:rect.y};
if(doLineSegmentsIntersect(p,p2,q,q2)){ return true; }
// If not intersecting with the 4 rect sides, then not intersecting
return(false);
}
该函数使用Peter Kelley的直线相交算法:
https://github.com/pgkelley4/line-segments-intersect/blob/master/js/line-segments-intersect.js
Peter的代码在此处复制,以防链接腐烂:
/**
* @author Peter Kelley
* @author pgkelley4@gmail.com
*/
/**
* See if two line segments intersect. This uses the
* vector cross product approach described below:
* http://stackoverflow.com/a/565282/786339
*
* @param {Object} p point object with x and y coordinates
* representing the start of the 1st line.
* @param {Object} p2 point object with x and y coordinates
* representing the end of the 1st line.
* @param {Object} q point object with x and y coordinates
* representing the start of the 2nd line.
* @param {Object} q2 point object with x and y coordinates
* representing the end of the 2nd line.
*/
function doLineSegmentsIntersect(p, p2, q, q2) {
var r = subtractPoints(p2, p);
var s = subtractPoints(q2, q);
var uNumerator = crossProduct(subtractPoints(q, p), r);
var denominator = crossProduct(r, s);
if (uNumerator == 0 && denominator == 0) {
// colinear, so do they overlap?
return ((q.x - p.x < 0) != (q.x - p2.x < 0) != (q2.x - p.x < 0) != (q2.x - p2.x < 0)) ||
((q.y - p.y < 0) != (q.y - p2.y < 0) != (q2.y - p.y < 0) != (q2.y - p2.y < 0));
}
if (denominator == 0) {
// lines are paralell
return false;
}
var u = uNumerator / denominator;
var t = crossProduct(subtractPoints(q, p), s) / denominator;
return (t >= 0) && (t <= 1) && (u >= 0) && (u <= 1);
}
/**
* Calculate the cross product of the two points.
*
* @param {Object} point1 point object with x and y coordinates
* @param {Object} point2 point object with x and y coordinates
*
* @return the cross product result as a float
*/
function crossProduct(point1, point2) {
return point1.x * point2.y - point1.y * point2.x;
}
/**
* Subtract the second point from the first.
*
* @param {Object} point1 point object with x and y coordinates
* @param {Object} point2 point object with x and y coordinates
*
* @return the subtraction result as a point object.
*/
function subtractPoints(point1, point2) {
var result = {};
result.x = point1.x - point2.x;
result.y = point1.y - point2.y;
return result;
}