from pandas import DataFrame
from scipy.misc import imread, imresize
rows = []
for product in products:
try:
relevant = product.categoryrelevant.all()[0].relevant
except IndexError:
relevant = False
if relevant:
relevant = "A"
else:
relevant = "B"
# this exists for all pictures
image_array = imread("{}/{}".format(MEDIA_ROOT, product.picture_file.url))
image_array = imresize(image_array, (160, 160))
image_array = image_array.reshape(-1)
print(image_array)
# [254 254 252 ..., 255 255 253]
print(image_array.shape)
# (76800,)
rows.append({"id": product.pk, "image": image_array, "class": relevant})
index.append(product)
df = DataFrame(rows, index=index)
http://scikit-learn.org/stable/auto_examples/hetero_feature_union.html
它接受“图像”列中的值。或者,也可以这样做
train_X = df.iloc[train_indices]["image"].values
,但我想稍后添加其他列。
def randomforest_image_pipeline():
"""Returns a RandomForest pipeline."""
return Pipeline([
("union", FeatureUnion(
transformer_list=[
("image", Pipeline([
("selector", ItemSelector(key="image")),
]))
],
transformer_weights={
"image": 1.0
},
)),
("classifier", RandomForestClassifier()),
])
from sklearn.model_selection import KFold
kfold(tested_pipeline=randomforest_image_pipeline(), df=df)
def kfold(tested_pipeline=None, df=None, splits=6):
k_fold = KFold(n_splits=splits)
for train_indices, test_indices in k_fold.split(df):
# training set
train_X = df.iloc[train_indices]
train_y = df.iloc[train_indices]['class'].values
# test set
test_X = df.iloc[test_indices]
test_y = df.iloc[test_indices]['class'].values
for val in train_X["image"]:
print(len(val), val.dtype, val.shape)
# 76800 uint8 (76800,) for all
tested_pipeline.fit(train_X, train_y) # crashes in this call
pipeline_predictions = tested_pipeline.predict(test_X)
...
.fit
我得到以下错误:
Traceback (most recent call last):
File "<path>/project/classifier/classify.py", line 362, in <module>
best = best_pipeline(dataframe=data, f1_scores=f1_dict, get_fp=True)
File "<path>/project/classifier/classify.py", line 351, in best_pipeline
confusion_list=confusion_list, get_fp=get_fp)
File "<path>/project/classifier/classify.py", line 65, in kfold
tested_pipeline.fit(train_X, train_y)
File "/usr/local/lib/python3.5/dist-packages/sklearn/pipeline.py", line 270, in fit
self._final_estimator.fit(Xt, y, **fit_params)
File "/usr/local/lib/python3.5/dist-packages/sklearn/ensemble/forest.py", line 247, in fit
X = check_array(X, accept_sparse="csc", dtype=DTYPE)
File "/usr/local/lib/python3.5/dist-packages/sklearn/utils/validation.py", line 382, in check_array
array = np.array(array, dtype=dtype, order=order, copy=copy)
ValueError: setting an array element with a sequence.
我发现其他人也有同样的问题,对他们来说,问题是他们的行长度不同。我的情况似乎不是这样,因为所有行都是一维的,长度为76800:
for val in train_X["image"]:
print(len(val), val.dtype, val.shape)
# 76800 uint8 (76800,) for all
array
[array([ 255., 255., 255., ..., 255., 255., 255.])
array([ 255., 255., 255., ..., 255., 255., 255.])
array([ 255., 255., 255., ..., 255., 255., 255.]) ...,
array([ 255., 255., 255., ..., 255., 255., 255.])
array([ 255., 255., 255.
我能做些什么来解决这个问题?