首先,您需要以正确的方式表示数据。
你有两个论点
X1
和
X2
,定义拓扑图像的坐标,以及一个目标值
Y
,定义每个点的高度。对于回归分析,您需要通过添加
X0
,始终等于1。
然后需要将参数和目标展开为矩阵
[m*m x 3]
和
[m*m x 1]
分别地你想找到向量
theta
,其将描述期望的平面。为此,您可以使用
法线方程
:
为了演示该方法,我生成了一些拓扑曲面。您可以在图片上看到曲面、带有拟合平面的曲面以及相减后的曲面:
下面是代码:
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
m = 256 #size of the matrix
X1, X2 = np.mgrid[:m, :m]
fig = plt.figure()
ax = fig.add_subplot(3,1,1, projection='3d')
jet = plt.get_cmap('jet')
#generation of the surface
F = 3
i = np.minimum(X1, m-X1-1)
j = np.minimum(X2, m-X2-1)
H = np.exp(-.5*(np.power(i, 2) + np.power(j, 2) )/(F*F))
Y = np.real( np.fft.ifft2 (H * np.fft.fft2( np.random.randn(m, m))))
a = 0.0005; b = 0.0002; #parameters of the tilted plane
Y = Y + (a*X1 + b*X2); #adding the plane
Y = (Y - np.min(Y)) / (np.max(Y) - np.min(Y)) #data scaling
#plot the initial topological surface
ax.plot_surface(X1,X2,Y, rstride = 1, cstride = 1, cmap = jet, linewidth = 0)
#Regression
X = np.hstack( ( np.reshape(X1, (m*m, 1)) , np.reshape(X2, (m*m, 1)) ) )
X = np.hstack( ( np.ones((m*m, 1)) , X ))
YY = np.reshape(Y, (m*m, 1))
theta = np.dot(np.dot( np.linalg.pinv(np.dot(X.transpose(), X)), X.transpose()), YY)
plane = np.reshape(np.dot(X, theta), (m, m));
ax = fig.add_subplot(3,1,2, projection='3d')
ax.plot_surface(X1,X2,plane)
ax.plot_surface(X1,X2,Y, rstride = 1, cstride = 1, cmap = jet, linewidth = 0)
#Subtraction
Y_sub = Y - plane
ax = fig.add_subplot(3,1,3, projection='3d')
ax.plot_surface(X1,X2,Y_sub, rstride = 1, cstride = 1, cmap = jet, linewidth = 0)
plt.show()