在前一个问题中
SystemT Compiler and dealing with Infinite Types in Haskell
我询问了如何将SystemT Lambda演算解析为SystemT组合子。我决定使用普通代数数据类型来编码SystemT Lambda演算和SystemT Combinator演算(基于注释:
SystemT Compiler and dealing with Infinite Types in Haskell
).
SystemTCombinator.hs:
module SystemTCombinator where
data THom = Id
| Unit
| Zero
| Succ
| Compose THom THom
| Pair THom THom
| Fst
| Snd
| Curry THom
| Eval
| Iter THom THom
deriving (Show)
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE TypeSynonymInstances #-}
module SystemTLambda where
import Control.Monad.Catch
import Data.Either (fromRight)
import qualified SystemTCombinator as SystemTC
type TVar = String
data TType = One | Prod TType TType | Arrow TType TType | Nat deriving (Eq)
instance Show TType where
show ttype = case ttype of
One -> "'Unit"
Nat -> "'Nat"
Prod ttype1 ttype2 ->
"(" ++ show ttype1 ++ " * " ++ show ttype2 ++ ")"
Arrow ttype1@(Arrow _ _) ttype2 ->
"(" ++ show ttype1 ++ ") -> " ++ show ttype2
Arrow ttype1 ttype2 -> show ttype1 ++ " -> " ++ show ttype2
data TTerm = Var TVar
| Let TVar TTerm TTerm
| Lam TVar TTerm
| App TTerm TTerm
| Unit
| Pair TTerm TTerm
| Fst TTerm
| Snd TTerm
| Zero
| Succ TTerm
| Iter TTerm TTerm TVar TTerm
| Annot TTerm TType
deriving (Show)
-- a context is a list of hypotheses/judgements
type TContext = [(TVar, TType)]
-- our exceptions for SystemT
data TException = TypeCheckException String
| BindingException String
deriving (Show)
instance Exception TException
newtype Parser a = Parser { run :: TContext -> Either SomeException a }
instance Functor Parser where
fmap f xs = Parser $ \ctx ->
either Left (\v -> Right $ f v) $ run xs ctx
instance Applicative Parser where
pure a = Parser $ \ctx -> Right a
fs <*> xs = Parser $ \ctx ->
either Left (\f -> fmap f $ run xs ctx) (run fs ctx)
instance Monad Parser where
xs >>= f = Parser $ \ctx ->
either Left (\v -> run (f v) ctx) $ run xs ctx
instance MonadThrow Parser where
throwM e = Parser (const $ Left $ toException e)
instance MonadCatch Parser where
catch p f = Parser $ \ctx ->
either
(\e -> case fromException e of
Just e' -> run (f e') ctx -- this handles the exception
Nothing -> Left e) -- this propagates it upwards
Right
$ run p ctx
withHypothesis :: (TVar, TType) -> Parser a -> Parser a
withHypothesis hyp cmd = Parser $ \ctx -> run cmd (hyp : ctx)
tvarToHom :: TVar -> Parser (SystemTC.THom, TType)
tvarToHom var = Parser $ \ctx ->
case foldr transform Nothing ctx of
Just x -> Right x
Nothing -> throwM $ BindingException ("unbound variable " ++ show var)
where
transform (var', varType) homAndType =
if var == var'
then Just (SystemTC.Snd, varType)
else homAndType >>= (\(varHom, varType) -> Just (SystemTC.Compose SystemTC.Fst varHom, varType))
check :: TTerm -> TType -> Parser SystemTC.THom
-- check a lambda
check (Lam var bodyTerm) (Arrow varType bodyType) =
withHypothesis (var, varType) $
check bodyTerm bodyType >>= (\bodyHom -> return $ SystemTC.Curry bodyHom)
check (Lam _ _ ) ttype = throwM
$ TypeCheckException ("expected function type, got '" ++ show ttype ++ "'")
-- check unit
check Unit One = return SystemTC.Unit
check Unit ttype =
throwM $ TypeCheckException ("expected unit type, got '" ++ show ttype ++ "'")
-- check products
check (Pair term1 term2) (Prod ttype1 ttype2) = do
hom1 <- check term1 ttype1
hom2 <- check term2 ttype2
return $ SystemTC.Pair hom1 hom2
check (Pair _ _ ) ttype = throwM
$ TypeCheckException ("expected product type, got '" ++ show ttype ++ "'")
-- check primitive recursion
check (Iter baseTerm inductTerm tvar numTerm) ttype = do
baseHom <- check baseTerm ttype
inductHom <- withHypothesis (tvar, ttype) (check inductTerm ttype)
numHom <- check numTerm Nat
return $ SystemTC.Compose (SystemTC.Pair SystemTC.Id numHom)
(SystemTC.Iter baseHom inductHom)
-- check let bindings
check (Let var valueTerm exprTerm) exprType = do
(valueHom, valueType) <- synth valueTerm
exprHom <- withHypothesis (var, valueType) (check exprTerm exprType)
return $ SystemTC.Compose (SystemTC.Pair SystemTC.Id valueHom) exprHom
check tterm ttype = do
(thom, ttype') <- synth tterm
if ttype == ttype'
then return thom
else throwM $ TypeCheckException
( "expected type '"
++ show ttype
++ "', inferred type '"
++ show ttype'
++ "'"
)
synth :: TTerm -> Parser (SystemTC.THom, TType)
synth (Var tvar) = tvarToHom tvar
synth (Let var valueTerm exprTerm) = do
(valueHom, valueType) <- synth valueTerm
(exprHom, exprType) <- withHypothesis (var, valueType) (synth exprTerm)
return (SystemTC.Compose (SystemTC.Pair SystemTC.Id valueHom) exprHom, exprType)
synth (App functionTerm valueTerm) = do
(functionHom, functionType) <- synth functionTerm
case functionType of
Arrow headType bodyType -> do
valueHom <- check valueTerm headType
return (SystemTC.Compose (SystemTC.Pair functionHom valueHom) SystemTC.Eval, bodyType)
_ -> throwM $ TypeCheckException ("expected function, got '" ++ show functionType ++ "'")
synth (Fst pairTerm) = do
(pairHom, pairType) <- synth pairTerm
case pairType of
Prod fstType sndType -> return (SystemTC.Compose pairHom SystemTC.Fst, fstType)
_ -> throwM $ TypeCheckException ("expected product, got '" ++ show pairType ++ "'")
synth (Snd pairTerm) = do
(pairHom, pairType) <- synth pairTerm
case pairType of
Prod fstType sndType -> return (SystemTC.Compose pairHom SystemTC.Snd, sndType)
_ -> throwM $ TypeCheckException ("expected product, got '" ++ show pairType ++ "'")
synth Zero = return (SystemTC.Compose SystemTC.Unit SystemTC.Zero, Nat)
synth (Succ numTerm) = do
numHom <- check numTerm Nat
return (SystemTC.Compose numHom SystemTC.Succ, Nat)
synth (Annot term ttype) = do
hom <- check term ttype
return (hom, ttype)
synth _ = throwM $ TypeCheckException "unknown synthesis"
SystemTLambda.TTerm
进入
SystemTCombinator.THom
.
systemTLambda :: TTerm
systemTLambda =
Let "sum"
(Annot
(Lam "x" $ Lam "y" $
Iter (Var "y") (Succ $ Var "n") "n" (Var "x"))
(Arrow Nat $ Arrow Nat Nat))
(App
(App
(Var "sum")
(Succ $ Succ Zero))
(Succ $ Succ $ Succ Zero))
systemTCombinator :: Either SomeException (SystemTC.THom, SystemTC.TType)
systemTCombinator = fromRight Unit $ run (synth result) []
Compose (Pair Id (Curry (Curry (Compose (Pair Id (Compose Fst Snd)) (Iter Snd (Compose Snd Succ)))))) (Compose (Pair (Compose (Pair Snd (Compose (Compose (Compose Unit Zero) Succ) Succ)) Eval) (Compose (Compose (Compose (Compose Unit Zero) Succ) Succ) Succ)) Eval)
RuntimeException
因为组合表达式是非类型化的,所以可能存在错误的组合表达式。然而,我的类型检查器应该确保一旦到达解释器,组合符就应该已经很好地输入了。
根据最初的博文,
http://semantic-domain.blogspot.com/2012/12/total-functional-programming-in-partial.html
evaluate Id = id
evaluate Unit = const ()
evaluate Zero = \() -> Z
evaluate (Succ n) = S n
evaluate (Compose f g) = (evaluate g) . (evaluate f)
evaluate (Pair l r) = (evaluate l, evaluate r)
evaluate Fst = fst
evaluate Snd = snd
evaluate (Curry h) = curry (evaluate h)
evaluate Eval = \(f, v) -> f v
evaluate (Iter base recurse) = \(a, n) ->
case n of
Z -> evaluate base a
S n -> evaluate recurse (a, evaluate (Iter base recurse) (a, n))
THom
树,这样我可以得到某种函数,可以部分执行。