首先,我的数据:
structure(list(Mins_Work = c(435L, 350L, 145L, 135L, 15L, 60L,
60L, 390L, 395L, 395L, 315L, 80L, 580L, 175L, 545L, 230L, 435L,
370L, 255L, 515L, 330L, 65L, 115L, 550L, 420L, 45L, 266L, 196L,
198L, 220L, 17L, 382L, 0L, 180L, 343L, 207L, 263L, 332L, 0L,
0L, 259L, 417L, 282L, 685L, 517L, 111L, 64L, 466L, 499L, 460L,
269L, 300L, 427L, 301L, 436L, 342L, 229L, 379L, 102L, 146L, NA,
94L, 345L, 73L, 204L, 512L, 113L, 135L, 458L, 493L, 552L, 108L,
335L, 395L, 508L, 546L, 396L, 159L, 325L, 747L, 650L, 377L, 461L,
669L, 186L, 220L, 410L, 708L, 409L, 515L, 413L, 166L, 451L, 660L,
177L, 192L, 191L, 461L, 637L, 297L, 601L, 586L, 270L, 479L, 0L,
480L, 397L, 174L, 111L, 0L, 610L, 332L, 345L, 423L, 160L, 611L,
0L, 345L, 550L, 324L, 427L, 505L, 632L, 560L, 230L, 495L, 235L,
522L, 654L, 465L, 377L, 260L, 572L, 612L, 594L, 624L, 237L, 0L,
38L, 409L, 634L, 292L, 706L, 399L, 568L, 0L, 694L, 298L, 616L,
553L, 581L, 423L, 636L, 623L, 338L, 345L, 521L, 438L, 504L, 600L,
616L, 656L, 285L, 474L, 688L, 278L, 383L, 535L, 363L, 470L, 457L,
303L, 123L, 363L, 329L, 513L, 636L, 421L, 220L, 430L, 428L, 536L,
156L, 615L, 429L, 103L, 332L, 250L, 281L, 248L, 435L, 589L, 515L,
158L, 0L, 649L, 427L, 193L, 225L, 0L, 280L, 163L, 536L, 301L,
406L, 230L, 519L, 0L, 303L, 472L, 392L, 326L, 368L, 405L, 515L,
308L, 259L, 769L, 93L, 517L, 261L, 420L, 248L, 265L, 834L, 313L,
131L, 298L, 134L, 385L, 648L, 529L, 487L, 533L, 641L, 429L, 339L,
508L, 560L, 439L, 381L, 397L, 692L, 534L, 148L, 366L, 167L, 425L,
315L, 476L, 384L, 498L, 502L, 308L, 360L, 203L, 410L, 626L, 593L,
409L, 531L, 157L, 0L, 357L, 443L, 615L, 564L, 341L, 352L, 609L,
686L, 386L, 323L, 362L, 597L, 325L, 51L, 570L, 579L, 284L, 0L,
530L, 171L, 640L, 263L, 112L, 217L, 152L, 203L, 394L, 135L, 234L,
507L, 224L, 174L, 210L, 138L, 52L, 326L, 413L, 695L, 370L, 256L,
327L, 490L, 128L, 469L, 567L, 359L, 561L, 478L, 233L, 550L, 390L
), Coffee_Cups = c(3L, 0L, 2L, 6L, 4L, 5L, 3L, 3L, 2L, 2L, 3L,
1L, 1L, 3L, 2L, 2L, 0L, 1L, 1L, 4L, 4L, 3L, 0L, 1L, 3L, 0L, 0L,
0L, 0L, 2L, 0L, 1L, 2L, 3L, 2L, 2L, 4L, 3L, 6L, 6L, 3L, 4L, 6L,
8L, 3L, 5L, 0L, 2L, 2L, 8L, 6L, 4L, 6L, 4L, 4L, 2L, 6L, 6L, 5L,
1L, 3L, 1L, 5L, 4L, 6L, 5L, 0L, 6L, 6L, 4L, 4L, 2L, 2L, 6L, 6L,
7L, 3L, 3L, 0L, 5L, 7L, 6L, 3L, 5L, 3L, 3L, 1L, 9L, 9L, 3L, 3L,
6L, 6L, 6L, 3L, 0L, 7L, 6L, 6L, 3L, 9L, 3L, 8L, 8L, 3L, 3L, 7L,
6L, 3L, 3L, 3L, 6L, 6L, 6L, 1L, 9L, 3L, 3L, 2L, 6L, 3L, 6L, 9L,
6L, 8L, 9L, 6L, 6L, 6L, 0L, 3L, 0L, 3L, 3L, 6L, 3L, 0L, 9L, 3L,
0L, 2L, 0L, 6L, 6L, 6L, 3L, 6L, 3L, 9L, 3L, 0L, 0L, 6L, 3L, 3L,
3L, 3L, 6L, 0L, 6L, 3L, 3L, 5L, 5L, 3L, 0L, 6L, 4L, 2L, 0L, 2L,
4L, 0L, 6L, 4L, 4L, 2L, 2L, 0L, 9L, 6L, 3L, 6L, 6L, 9L, 0L, 6L,
6L, 6L, 6L, 6L, 6L, 3L, 3L, 0L, 9L, 6L, 3L, 6L, 3L, 6L, 1L, 6L,
6L, 6L, 6L, 6L, 1L, 3L, 9L, 6L, 3L, 6L, 9L, 3L, 5L, 6L, 3L, 0L,
6L, 3L, 3L, 5L, 0L, 6L, 3L, 5L, 3L, 0L, 6L, 7L, 3L, 6L, 6L, 6L,
6L, 3L, 5L, 6L, 7L, 6L, 6L, 4L, 6L, 4L, 5L, 5L, 6L, NA, 8L, 6L,
6L, 6L, 9L, 3L, 3L, 9L, 7L, 8L, 4L, 3L, 3L, 3L, 6L, 6L, 6L, 3L,
4L, 3L, 3L, 6L, 4L, 3L, 3L, 4L, 6L, 0L, 3L, 6L, 4L, 3L, 3L, 7L,
4L, 4L, 3L, 1L, 6L, 4L, 6L, 5L, 3L, 6L, 6L, 3L, 6L, 3L, 5L, 6L,
6L, 3L, 6L, 4L, 9L, 7L, 6L, 3L, 3L, 3L, 4L, 6L, 3L, 6L, 3L),
Month_Name = c("September", "September", "September", "September",
"September", "September", "September", "September", "September",
"September", "September", "September", "September", "September",
"September", "September", "September", "September", "September",
"September", "September", "September", "September", "September",
"September", "September", "September", "September", "September",
"September", "October", "October", "October", "October",
"October", "October", "October", "October", "October", "October",
"October", "October", "October", "October", "October", "October",
"October", "October", "October", "October", "October", "October",
"October", "October", "October", "October", "October", "October",
"October", "October", "October", "November", "November",
"November", "November", "November", "November", "November",
"November", "November", "November", "November", "November",
"November", "November", "November", "November", "November",
"November", "November", "November", "November", "November",
"November", "November", "November", "November", "November",
"November", "November", "November", "December", "December",
"December", "December", "December", "December", "December",
"December", "December", "December", "December", "December",
"December", "December", "December", "December", "December",
"December", "December", "December", "December", "December",
"December", "December", "December", "December", "December",
"December", "December", "December", "December", "January",
"January", "January", "January", "January", "January", "January",
"January", "January", "January", "January", "January", "January",
"January", "January", "January", "January", "January", "January",
"January", "January", "January", "January", "January", "January",
"January", "January", "January", "January", "January", "January",
"February", "February", "February", "February", "February",
"February", "February", "February", "February", "February",
"February", "February", "February", "February", "February",
"February", "February", "February", "February", "February",
"February", "February", "February", "February", "February",
"February", "February", "February", "March", "March", "March",
"March", "March", "March", "March", "March", "March", "March",
"March", "March", "March", "March", "March", "March", "March",
"March", "March", "March", "March", "March", "March", "March",
"March", "March", "March", "March", "March", "March", "March",
"April", "April", "April", "April", "April", "April", "April",
"April", "April", "April", "April", "April", "April", "April",
"April", "April", "April", "April", "April", "April", "April",
"April", "April", "April", "April", "April", "April", "April",
"April", "April", "May", "May", "May", "May", "May", "May",
"May", "May", "May", "May", "May", "May", "May", "May", "May",
"May", "May", "May", "May", "May", "May", "May", "May", "May",
"May", "May", "May", "May", "May", "May", "May", "June",
"June", "June", "June", "June", "June", "June", "June", "June",
"June", "June", "June", "June", "June", "June", "June", "June",
"June", "June", "June", "June", "June", "June", "June", "June",
"June", "June", "June", "June", "June", "July", "July", "July",
"July", "July", "July", "July", "July", "July", "July", "July"
)), class = "data.frame", row.names = c(NA, -314L))
到目前为止,我的情节大致如下:
ggplot(slack.work,
aes(x=Coffee_Cups,
y=Mins_Work,
color=Month_Name))+
geom_point(alpha = .4)+
geom_smooth(method = "lm",
se = F)+
scale_colour_viridis_d()+
annotate("text",
x=3,
y=800,
label="(Month Name) had the strongest effect on productivity.",
size = 4,
color="steelblue")+
theme_bw()+
labs(title = "Coffee Cups x Minutes of Productivity",
subtitle = "Pearson r = .30, p < .001",
x="Cups of Coffee",
y="Minutes of Work",
color="Month")+
theme(plot.title = element_text(face = "bold",
size = 15,
family = "mono"),
plot.subtitle = element_text(face = "italic"))
annotate
地块的一部分。其他回归线都可以是另一种通用颜色。任何帮助都将不胜感激。