如果我们指定
n
top_n(word, n)
术语,并且在我们的输入数据中有足够的单词,它应该可以正常工作。
# OP's
df_bing_sample %>%
group_by(sentiment) %>%
top_n(10, n) %>% # <--- specify sort by n, rather than by method, the last column
ungroup() %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(word, n, fill = sentiment)) +
geom_col(show.legend = FALSE) +
facet_wrap(~sentiment, scales = "free_y") +
labs(y = "Contribution to sentiment",
x = NULL) +
coord_flip()
在这里用10个以上的正数和;阴性:
library(tidytext)
set.seed(42)
df_bing_sample <- tidytext::sentiments %>%
filter(lexicon == "bing") %>%
sample_n(50) %>%
mutate(n = rnorm(50, 30, 10) %>% floor %>% as.integer()) %>%
mutate(method = "Bing et al.") %>%
select(word, n, sentiment, method)