我有一个包含事件详细信息的数据框架,我正在尝试按日期和用户ID获取最近报告的前5个事件。这里是我迄今为止尝试过的代码。
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
val df = sc.parallelize(Seq( ("20180515114049", "user001","e001","cross-over","some data related to even"),
("20180515114049", "user004","e002","cross-limit","some data related to event"),
("20180515114049", "user001","e001","cross-over","some data related to event"),
("20180615114049", "user001","e001","cross-over","some data related to event"),
("20180715114049", "user003","e004","cross-cl","some data related to event"),
("20180715114049", "user005","e001","cross-over","some data related to event"),
("20180715114049", "user005","e002","cross-limit","some data related to event"),
("20180715114049", "user005","e003","no-cross","some data related to event"),
("20180715114049", "user005","e004","cross-over","some data related to event"),
("20180715114049", "user005","e005","dl-over","some data related to event"),
("20180715114049", "user005","e003","no-cross","some data related to event"),
("20180815114049", "user006","e001","cross-over","some data related to event"),
("20180915114049", "user001","e001","cross-over","some data related to event"),
("20180105114049", "user001","e006","straight","some data related to event")
)).toDF("eventtime", "userid","eventid","event_title","eventdata")
df.show()
+--------------+-------+-------+-----------+--------------------+
| eventtime| userid|eventid|event_title| eventdata|
+--------------+-------+-------+-----------+--------------------+
|20180515114049|user001| e001| cross-over|some data related...|
|20180515114049|user004| e002|cross-limit|some data related...|
|20180515114049|user001| e001| cross-over|some data related...|
|20180615114049|user001| e001| cross-over|some data related...|
|20180715114049|user003| e004| cross-cl|some data related...|
|20180715114049|user005| e001| cross-over|some data related...|
|20180715114049|user005| e002|cross-limit|some data related...|
|20180715114049|user005| e003| no-cross|some data related...|
|20180715114049|user005| e004| cross-over|some data related...|
|20180715114049|user005| e005| dl-over|some data related...|
|20180715114049|user005| e003| no-cross|some data related...|
|20180815114049|user006| e001| cross-over|some data related...|
|20180915114049|user001| e001| cross-over|some data related...|
|20180105114049|user001| e006| straight|some data related...|
+--------------+-------+-------+-----------+--------------------+
val df2= df.groupBy($"userid",$"eventid").agg(last($"eventtime") as "lasteventtime")
df2.show(false)
+-------+-------+--------------+
|userid |eventid|lasteventtime |
+-------+-------+--------------+
|user005|e004 |20180715114049|
|user005|e001 |20180715114049|
|user001|e006 |20180105114049|
|user001|e001 |20180915114049|
|user005|e002 |20180715114049|
|user006|e001 |20180815114049|
|user004|e002 |20180515114049|
|user005|e005 |20180715114049|
|user005|e003 |20180715114049|
|user003|e004 |20180715114049|
+-------+-------+--------------+
…
下面是我正在努力联系的部分,将最后一个报告的组汇总到排名中,并获得最后一个报告的前5名。
…
val w = Window.partitionBy($"userid",$"event_title",$"eventid").orderBy($"eventtime".desc)
val contentByRank = df.withColumn("rank", dense_rank().over(w)).filter($"rank" <= 5)
contentByRank.show(20,false)
另外,如何获得过滤后排名的前5位,在这种情况下,我们可能有多个事件具有相同的排名。
+--------------+-------+-------+-----------+--------------------------+----+
|eventtime |userid |eventid|event_title|eventdata |rank|
+--------------+-------+-------+-----------+--------------------------+----+
|20180515114049|user004|e002 |cross-limit|some data related to event|1 |
|20180715114049|user005|e004 |cross-over |some data related to event|1 |
|20180815114049|user006|e001 |cross-over |some data related to event|1 |
|20180715114049|user005|e003 |no-cross |some data related to event|1 |
|20180715114049|user005|e003 |no-cross |some data related to event|1 |
|20180715114049|user005|e005 |dl-over |some data related to event|1 |
|20180715114049|user003|e004 |cross-cl |some data related to event|1 |
|20180715114049|user005|e001 |cross-over |some data related to event|1 |
|20180105114049|user001|e006 |straight |some data related to event|1 |
|20180715114049|user005|e002 |cross-limit|some data related to event|1 |
|20180915114049|user001|e001 |cross-over |some data related to event|1 |
|20180615114049|user001|e001 |cross-over |some data related to event|2 |
|20180515114049|user001|e001 |cross-over |some data related to even |3 |
|20180515114049|user001|e001 |cross-over |some data related to event|3 |
+--------------+-------+-------+-----------+--------------------------+----+