对于我来说,如果输出
apply
是
pandas DataFrame
,因此,如有必要,最后转换为
dask DataFrame
:
def f(x):
trip = ((1,2,x) for x in range(3))
df = pd.DataFrame.from_records(trip)
return df
df1 = ddf.groupby('cars').apply(f, meta={'x': 'i8', 'y': 'i8', 'z': 'i8'}).compute()
#only for remove MultiIndex
df1 = df1.reset_index()
print (df1)
cars level_1 x y z
0 1 0 1 2 0
1 1 1 1 2 1
2 1 2 1 2 2
3 2 0 1 2 0
4 2 1 1 2 1
5 2 2 1 2 2
6 3 0 1 2 0
7 3 1 1 2 1
8 3 2 1 2 2
ddf1 = dd.from_pandas(df1,npartitions=1)
print (ddf1)
cars level_1 x y z
npartitions=1
0 int64 int64 int64 int64 int64
8 ... ... ... ... ...
Dask Name: from_pandas, 1 tasks
编辑:
L = []
def f(x):
trip = ((1,2,x) for x in range(3))
#append each
L.append(da.from_array(np.array(list(trip)), chunks=(1,3)))
ddf.groupby('cars').apply(f, meta={'x': 'i8', 'y': 'i8', 'z': 'i8'}).compute()
dar = da.concatenate(L, axis=0)
print (dar)
dask.array<concatenate, shape=(12, 3), dtype=int32, chunksize=(1, 3)>