莫顿编码只是将两个或多个组件的位交织在一起。
如果我们按重要性递增的顺序对二进制数字进行编号,那么无符号整数中的最低有效二进制数字是0(和二进制数字
我
具有值2
我
),然后是二进制数字
我
in组件
K
属于
N
对应于二进制数字(
我
N
+
K
)在莫顿密码中。
这里有两个简单的函数来编码和解码三分量莫顿码:
#include <stdlib.h>
#include <inttypes.h>
/* This source is in the public domain. */
/* Morton encoding in binary (components 21-bit: 0..2097151)
0zyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyxzyx */
#define BITMASK_0000000001000001000001000001000001000001000001000001000001000001 UINT64_C(18300341342965825)
#define BITMASK_0000001000001000001000001000001000001000001000001000001000001000 UINT64_C(146402730743726600)
#define BITMASK_0001000000000000000000000000000000000000000000000000000000000000 UINT64_C(1152921504606846976)
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
#define BITMASK_0000000000000011000000000011000000000011000000000011000000000011 UINT64_C(844631138906115)
#define BITMASK_0000000111000000000011000000000011000000000011000000000011000000 UINT64_C(126113986927919296)
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
#define BITMASK_0000000000000000000000000000000000001111000000000000000000001111 UINT64_C(251658255)
#define BITMASK_0000000000000000000000001111000000000000000000001111000000000000 UINT64_C(1030792212480)
#define BITMASK_0000000000011111000000000000000000000000000000000000000000000000 UINT64_C(8725724278030336)
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
#define BITMASK_0000000000000000000000000000000000000000000000000000000011111111 UINT64_C(255)
#define BITMASK_0000000000000000000000000001111111111111000000000000000000000000 UINT64_C(137422176256)
/* ccccccccccccccccccccc */
#define BITMASK_21BITS UINT64_C(2097151)
static inline void morton_decode(uint64_t m, uint32_t *xto, uint32_t *yto, uint32_t *zto)
{
const uint64_t mask0 = BITMASK_0000000001000001000001000001000001000001000001000001000001000001,
mask1 = BITMASK_0000001000001000001000001000001000001000001000001000001000001000,
mask2 = BITMASK_0001000000000000000000000000000000000000000000000000000000000000,
mask3 = BITMASK_0000000000000011000000000011000000000011000000000011000000000011,
mask4 = BITMASK_0000000111000000000011000000000011000000000011000000000011000000,
mask5 = BITMASK_0000000000000000000000000000000000001111000000000000000000001111,
mask6 = BITMASK_0000000000000000000000001111000000000000000000001111000000000000,
mask7 = BITMASK_0000000000011111000000000000000000000000000000000000000000000000,
mask8 = BITMASK_0000000000000000000000000000000000000000000000000000000011111111,
mask9 = BITMASK_0000000000000000000000000001111111111111000000000000000000000000;
uint64_t x = m,
y = m >> 1,
z = m >> 2;
/* 000c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c */
x = (x & mask0) | ((x & mask1) >> 2) | ((x & mask2) >> 4);
y = (y & mask0) | ((y & mask1) >> 2) | ((y & mask2) >> 4);
z = (z & mask0) | ((z & mask1) >> 2) | ((z & mask2) >> 4);
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
x = (x & mask3) | ((x & mask4) >> 4);
y = (y & mask3) | ((y & mask4) >> 4);
z = (z & mask3) | ((z & mask4) >> 4);
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
x = (x & mask5) | ((x & mask6) >> 8) | ((x & mask7) >> 16);
y = (y & mask5) | ((y & mask6) >> 8) | ((y & mask7) >> 16);
z = (z & mask5) | ((z & mask6) >> 8) | ((z & mask7) >> 16);
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
x = (x & mask8) | ((x & mask9) >> 16);
y = (y & mask8) | ((y & mask9) >> 16);
z = (z & mask8) | ((z & mask9) >> 16);
/* 0000000000000000000000000000000000000000000ccccccccccccccccccccc */
if (xto) *xto = x;
if (yto) *yto = y;
if (zto) *zto = z;
}
static inline uint64_t morton_encode(uint32_t xsrc, uint32_t ysrc, uint32_t zsrc)
{
const uint64_t mask0 = BITMASK_0000000001000001000001000001000001000001000001000001000001000001,
mask1 = BITMASK_0000001000001000001000001000001000001000001000001000001000001000,
mask2 = BITMASK_0001000000000000000000000000000000000000000000000000000000000000,
mask3 = BITMASK_0000000000000011000000000011000000000011000000000011000000000011,
mask4 = BITMASK_0000000111000000000011000000000011000000000011000000000011000000,
mask5 = BITMASK_0000000000000000000000000000000000001111000000000000000000001111,
mask6 = BITMASK_0000000000000000000000001111000000000000000000001111000000000000,
mask7 = BITMASK_0000000000011111000000000000000000000000000000000000000000000000,
mask8 = BITMASK_0000000000000000000000000000000000000000000000000000000011111111,
mask9 = BITMASK_0000000000000000000000000001111111111111000000000000000000000000;
uint64_t x = xsrc,
y = ysrc,
z = zsrc;
/* 0000000000000000000000000000000000000000000ccccccccccccccccccccc */
x = (x & mask8) | ((x << 16) & mask9);
y = (y & mask8) | ((y << 16) & mask9);
z = (z & mask8) | ((z << 16) & mask9);
/* 000000000000000000000000000ccccccccccccc0000000000000000cccccccc */
x = (x & mask5) | ((x << 8) & mask6) | ((x << 16) & mask7);
y = (y & mask5) | ((y << 8) & mask6) | ((y << 16) & mask7);
z = (z & mask5) | ((z << 8) & mask6) | ((z << 16) & mask7);
/* 00000000000ccccc00000000cccc00000000cccc00000000cccc00000000cccc */
x = (x & mask3) | ((x << 4) & mask4);
y = (y & mask3) | ((y << 4) & mask4);
z = (z & mask3) | ((z << 4) & mask4);
/* 0000000ccc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc0000cc */
x = (x & mask0) | ((x << 2) & mask1) | ((x << 4) & mask2);
y = (y & mask0) | ((y << 2) & mask1) | ((y << 4) & mask2);
z = (z & mask0) | ((z << 2) & mask1) | ((z << 4) & mask2);
/* 000c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c00c */
return x | (y << 1) | (z << 2);
}
这些函数对称工作。为了解码,二进制数字和数字组被移动到更大的连续单位;为了编码,二进制数字组通过移位进行拆分和扩展。检查遮罩(
BITMASK_
常量以二进制数字模式命名)和移位操作,以详细了解编码和解码是如何发生的。
虽然这两个函数相当有效,但它们没有得到优化。
通过使用随机21位无符号整数分量进行数十亿次往返测试,验证了上述函数的有效性:对莫顿编码值进行解码会产生原来的三个分量。