代码之家  ›  专栏  ›  技术社区  ›  Jürgen K.

在vgg、keras中打印所有分类类。索引器

  •  1
  • Jürgen K.  · 技术社区  · 7 年前

    我试图打印出所有已知的类及其概率值。第一个值是概率最高的类。

    以下是我目前的代码:

    from keras.applications.vgg16 import VGG16
    from keras.preprocessing.image import load_img
    from keras.preprocessing.image import img_to_array
    from keras.applications.vgg16 import preprocess_input
    from keras.applications.vgg16 import decode_predictions
    
    model = VGG16()
    
    print(model.summary())
    
    
    # load an image from file
    image = load_img('./pictures/door.jpg', target_size=(224, 224))
    image = img_to_array(image)  #output Numpy-array
    
    #4-dimensional: samples, rows, columns, and channels.
    image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2]))
    
    
    # prepare the image for the VGG model. 
    image = preprocess_input(image)
    
    
    # predict the probability across all output classes. 
    yhat = model.predict(image)
    
    
    # convert the probabilities to class labels
    label = decode_predictions(yhat)
    # retrieve the most likely result, e.g. highest probability
    for i in range(0,5):
        label = label[i][i]
        print('%s (%.2f%%)' % (label[1], label[2] * 100))
    

    我得到以下错误:

    Traceback (most recent call last):
      File path, line 38, in <module>
        print('%s (%.2f%%)' % (label[1], label[2] * 100))
    IndexError: string index out of range
    

    你知道怎么处理吗? 提前感谢^^

    1 回复  |  直到 6 年前
        1
  •  3
  •   Ioannis Nasios    7 年前

    您的代码中有一个错误。试试这个:

    labels = decode_predictions(yhat)[0]
    # retrieve the most likely result, e.g. highest probability
    for i in range(0,5):
        label = labels[i]
        #print('%s (%.2f%%)' % (label[1], label[2] * 100)) 
        print('%s (%.2f%%)' % (label[1], float(label[2]) * 100))