代码之家  ›  专栏  ›  技术社区  ›  Ashag

计算R数据帧中的加权平均值

  •  0
  • Ashag  · 技术社区  · 7 年前
    "f","index","values","lo.80","lo.95","hi.80","hi.95"
    
    "auto.arima",2017-07-31 16:40:00,2.81613884762163,NA,NA,NA,NA
    
    "auto.arima",2017-07-31 16:40:10,2.83441637197378,NA,NA,NA,NA
    
    "auto.arima",2017-07-31 20:39:10,3.18497899649267,2.73259824384436,2.49312233904087,3.63735974914098,3.87683565394447
    
    "auto.arima",2017-07-31 20:39:20,3.16981166809297,2.69309866988864,2.44074205235297,3.64652466629731,3.89888128383297
    
    "ets",2017-07-31 16:40:00,2.93983529828936,NA,NA,NA,NA
    
    "ets",2017-07-31 16:40:10,3.09739640066054,NA,NA,NA,NA
    
    "ets",2017-07-31 20:39:10,3.1951571771414,2.80966705285567,2.60560090776504,3.58064730142714,3.78471344651776
    
    "ets",2017-07-31 20:39:20,3.33876776870274,2.93593322313957,2.72268549604222,3.7416023142659,3.95485004136325
    
    "bats",2017-07-31 16:40:00,2.82795253090081,NA,NA,NA,NA
    
    "bats",2017-07-31 16:40:10,2.96389759682623,NA,NA,NA,NA
    
    "bats",2017-07-31 20:39:10,3.1383560278272,2.76890864400062,2.573335012715,3.50780341165378,3.7033770429394
    
    "bats",2017-07-31 20:39:20,3.3561357998535,2.98646195085452,2.79076843614824,3.72580964885248,3.92150316355876
    

    对于自动中的每一行。arima在ets和BAT中有一个对应的行具有相同的时间戳值,因此加权平均值应计算如下:

    value\u arima*1/3+values\u ets*1/3+values\u bats*1/3;lo的类似值。应计算80和其他列。

    新的数据帧可能看起来像:

    index(timesamp from above dataframe),avg,avg_lo_80,avg_lo_95,avg_hi_80,avg_hi_95
    

    我想我需要使用spread()和mutate()函数来实现这一点。作为R的新手,在形成这个数据帧之后,我无法继续。

    请帮忙。

    1 回复  |  直到 7 年前
        1
  •  1
  •   Gilles San Martin    7 年前

    您提供的示例不是加权平均值,而是简单平均值。 dput

    d <- structure(list(f = structure(c(1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 
    2L, 2L, 2L, 2L), .Label = c("auto.arima", "bats", "ets"), class = "factor"), 
    index = structure(c(1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 
    3L, 4L), .Label = c("2017-07-31 16:40:00", "2017-07-31 16:40:10", 
    "2017-07-31 20:39:10", "2017-07-31 20:39:20"), class = "factor"), 
    values = c(2.81613884762163, 2.83441637197378, 3.18497899649267, 
    3.16981166809297, 2.93983529828936, 3.09739640066054, 3.1951571771414, 
    3.33876776870274, 2.82795253090081, 2.96389759682623, 3.1383560278272, 
    3.3561357998535), lo.80 = c(NA, NA, 2.73259824384436, 2.69309866988864, 
    NA, NA, 2.80966705285567, 2.93593322313957, NA, NA, 2.76890864400062, 
    2.98646195085452), lo.95 = c(NA, NA, 2.49312233904087, 2.44074205235297, 
    NA, NA, 2.60560090776504, 2.72268549604222, NA, NA, 2.573335012715, 
    2.79076843614824), hi.80 = c(NA, NA, 3.63735974914098, 3.64652466629731, 
    NA, NA, 3.58064730142714, 3.7416023142659, NA, NA, 3.50780341165378, 
    3.72580964885248), hi.95 = c(NA, NA, 3.87683565394447, 3.89888128383297, 
    NA, NA, 3.78471344651776, 3.95485004136325, NA, NA, 3.7033770429394, 
    3.92150316355876)), .Names = c("f", "index", "values", "lo.80", 
    "lo.95", "hi.80", "hi.95"), class = "data.frame", row.names = c(NA, 
    -12L))
    
    > aggregate(d[,3:7], by = d["index"], FUN = mean)
                    index   values    lo.80    lo.95    hi.80    hi.95
    1 2017-07-31 16:40:00 2.861309       NA       NA       NA       NA
    2 2017-07-31 16:40:10 2.965237       NA       NA       NA       NA
    3 2017-07-31 20:39:10 3.172831 2.770391 2.557353 3.575270 3.788309
    4 2017-07-31 20:39:20 3.288238 2.871831 2.651399 3.704646 3.925078
    

    您可以将此输出保存在对象中,并根据需要更改列名。

    如果你真的想要一个加权平均值,这是一种获得它的方法(这里bat的权重为0.8,其他两个权重为0.1):

    > d$weight <- (d$f)
    > levels(d$weight) # check the levels
    [1] "auto.arima" "bats"       "ets"       
    > levels(d$weight) <- c(0.1, 0.8, 0.1)
    > # transform the factor into numbers
    > # warning as.numeric(d$weight) is not correct !!
    > d$weight <- as.numeric(as.character((d$weight))) 
    > 
    > # Here the result is saved in a data.frame called "result
    > result <- aggregate(d[,3:7] * d$weight, by = d["index"], FUN = sum)
    > result
                    index   values    lo.80    lo.95    hi.80    hi.95
    1 2017-07-31 16:40:00 2.837959       NA       NA       NA       NA
    2 2017-07-31 16:40:10 2.964299       NA       NA       NA       NA
    3 2017-07-31 20:39:10 3.148698 2.769353 2.568540 3.528043 3.728857
    4 2017-07-31 20:39:20 3.335767 2.952073 2.748958 3.719460 3.922576