我尝试了以下手动方法:
dict = {'id': ['a','b','c','d'], 'testers_time': [10, 30, 15, None], 'stage_1_to_2_time': [30, None, 30, None], 'activated_time' : [40, None, 45, None],'stage_2_to_3_time' : [30, None, None, None],'engaged_time' : [70, None, None, None]}
df = pd.DataFrame(dict, columns=['id', 'testers_time', 'stage_1_to_2_time', 'activated_time', 'stage_2_to_3_time', 'engaged_time'])
df= df.dropna(subset=['testers_time']).sort_values('testers_time')
prob = df['testers_time'].value_counts(normalize=True)
print(prob)
#0.333333, 0.333333, 0.333333
plt.plot(df['testers_time'], prob, marker='.', linestyle='-')
plt.show()
我在stackoverflow上找到了以下方法:
dict = {'id': ['a','b','c','d'], 'testers_time': [10, 30, 15, None], 'stage_1_to_2_time': [30, None, 30, None], 'activated_time' : [40, None, 45, None],'stage_2_to_3_time' : [30, None, None, None],'engaged_time' : [70, None, None, None]}
df = pd.DataFrame(dict, columns=['id', 'testers_time', 'stage_1_to_2_time', 'activated_time', 'stage_2_to_3_time', 'engaged_time'])
df= df.dropna(subset=['testers_time']).sort_values('testers_time')
fit = stats.norm.pdf(df['testers_time'], np.mean(df['testers_time']), np.std(df['testers_time']))
print(fit)
#0.02902547, 0.04346777, 0.01829513]
plt.plot(df['testers_time'], fit, marker='.', linestyle='-')
plt.hist(df['testers_time'], normed='true')
plt.show()
正如你所看到的,我得到完全不同的值-概率是正确的,为1,但对2,他们不(也不加起来100%),和Y轴(%)的直方图是基于6个箱,而不是3。
你能解释一下我怎样才能得到2的正确概率吗?