我想,你想要的是“连续检测”,而不是“单次检测”,对吧?
你只需要一些小变化:
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
if face_cascade.empty(): raise Exception("your face_cascade is empty. are you sure, the path is correct ?")
eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')
if eye_cascade.empty(): raise Exception("your eye_cascade is empty. are you sure, the path is correct ?")
video = cv2.VideoCapture(0)
while(video.isOpened()):
ret, frame = video.read()
if frame not None:
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (ex,ey,ew,eh) in eyes:
cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()