代码之家  ›  专栏  ›  技术社区  ›  Ahmed Ramzy

使用OpenCV从图像中删除水印

  •  60
  • Ahmed Ramzy  · 技术社区  · 9 年前

    首先,我有这张图片,我想制作一个应用程序,可以检测像这样的图片,并从中删除圆圈(水印)。

    image has a watermark

    int main(){
        Mat im1,im2,im3,gray,gray2,result;
    
        im2=imread(" (2).jpg");
        namedWindow("x",CV_WINDOW_FREERATIO);
        imshow("x",im2);
    
        //converting it to gray
        cvtColor(im2,gray,CV_BGR2GRAY);
        // creating a new image that will have the cropped ellipse
        Mat ElipseImg(im2.rows,im2.cols,CV_8UC1,Scalar(0,0,0));
    
        //detecting the largest circle
        GaussianBlur(gray,gray,Size(5,5),0);
        vector<Vec3f> circles;
        HoughCircles(gray,circles,CV_HOUGH_GRADIENT,1,gray.rows/8,100,100,100,0);
    
        uchar x;
        int measure=0;int id=0;
        for(int i=0;i<circles.size();i++){
            if(cvRound(circles[i][2])>measure && cvRound(circles[i][2])<1000){
                measure=cvRound(circles[i][2]);
                id=i;
            }
        }
    
    
        Point center(cvRound(circles[id][0]),cvRound(circles[id][1]));
        int radius=cvRound(circles[id][2]);
        circle(im2,center,3,Scalar(0,255,0),-1,8,0);
        circle(im2,center,radius,Scalar(0,255,0),2,8,0);
        ellipse(ElipseImg,center,Size(radius,radius),0,0,360,Scalar(255,255,255),-1,8);
        cout<<"center: "<<center<<" radius: "<<radius<<endl;
    
    
    
        Mat res;
        bitwise_and(gray,ElipseImg,result);
        namedWindow("bitwise and",CV_WINDOW_FREERATIO);
        imshow("bitwise and",result);
    
        // trying to estimate the Intensity  of the circle for the thresholding
        x=result.at<uchar>(cvRound(circles[id][0]+30),cvRound(circles[id][1]));
        cout<<(int)x;
    
        //thresholding the  output image
        threshold(ElipseImg,ElipseImg,(int)x-10,250,CV_THRESH_BINARY);
        namedWindow("threshold",CV_WINDOW_FREERATIO);
        imshow("threshold",ElipseImg);
    
        // making bitwise_or
        bitwise_or(gray,ElipseImg,res);
        namedWindow("bitwise or",CV_WINDOW_FREERATIO);
        imshow("bitwise or",res);
    
        waitKey(0);
    }
    

    到目前为止,我所做的是:

    1. 我将其转换为灰度
    2. 我使用霍夫圆检测最大的圆,然后在新图像中制作一个半径相同的圆
    3. 这个带有灰色刻度的新圆圈使用( bitwise_and )给我一个只有那个圆圈的图像
    4. 设置新图像的阈值
    5. bitwise_or 阈值的结果

    我的问题是,圆圈内的白色曲线上没有出现任何黑色文本。我试图通过使用像素值而不是阈值来去除颜色,但问题是一样的。 那么,有什么解决方案或建议吗?

    结果如下: enter image description here

    2 回复  |  直到 5 年前
        1
  •  47
  •   dhanushka    9 年前

    我不确定以下解决方案在您的情况下是否可以接受。但我认为它的表现稍好一些,并不在乎水印的形状。

    • 使用形态学过滤移除笔划。这将为您提供背景图像。 background

    • 计算差值图像:差值=背景-初始值,阈值为:二进制值=阈值(差值)

    binary1

    • 对背景图像设置阈值并提取水印覆盖的暗区域

    dark

    • 从初始图像中,提取水印区域内的像素并对这些像素设置阈值,然后将它们粘贴到先前的二进制图像中

    binary2

    以上是一个粗略的描述。下面的代码应该能更好地解释它。

    Mat im = [load the color image here];
    
    Mat gr, bg, bw, dark;
    
    cvtColor(im, gr, CV_BGR2GRAY);
    
    // approximate the background
    bg = gr.clone();
    for (int r = 1; r < 5; r++)
    {
        Mat kernel2 = getStructuringElement(MORPH_ELLIPSE, Size(2*r+1, 2*r+1));
        morphologyEx(bg, bg, CV_MOP_CLOSE, kernel2);
        morphologyEx(bg, bg, CV_MOP_OPEN, kernel2);
    }
    
    // difference = background - initial
    Mat dif = bg - gr;
    // threshold the difference image so we get dark letters
    threshold(dif, bw, 0, 255, CV_THRESH_BINARY_INV | CV_THRESH_OTSU);
    // threshold the background image so we get dark region
    threshold(bg, dark, 0, 255, CV_THRESH_BINARY_INV | CV_THRESH_OTSU);
    
    // extract pixels in the dark region
    vector<unsigned char> darkpix(countNonZero(dark));
    int index = 0;
    for (int r = 0; r < dark.rows; r++)
    {
        for (int c = 0; c < dark.cols; c++)
        {
            if (dark.at<unsigned char>(r, c))
            {
                darkpix[index++] = gr.at<unsigned char>(r, c);
            }
        }
    }
    // threshold the dark region so we get the darker pixels inside it
    threshold(darkpix, darkpix, 0, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
    
    // paste the extracted darker pixels
    index = 0;
    for (int r = 0; r < dark.rows; r++)
    {
        for (int c = 0; c < dark.cols; c++)
        {
            if (dark.at<unsigned char>(r, c))
            {
                bw.at<unsigned char>(r, c) = darkpix[index++];
            }
        }
    }
    
        2
  •  12
  •   singrium    5 年前

    Python版本的 dhanushka answer

    # Import the necessary packages
    import cv2
    import numpy as np
    
    
    def back_rm(filename):
        # Load the image
        img = cv2.imread(filename)
    
        # Convert the image to grayscale
        gr = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
        # Make a copy of the grayscale image
        bg = gr.copy()
    
        # Apply morphological transformations
        for i in range(5):
            kernel2 = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,
                                                (2 * i + 1, 2 * i + 1))
            bg = cv2.morphologyEx(bg, cv2.MORPH_CLOSE, kernel2)
            bg = cv2.morphologyEx(bg, cv2.MORPH_OPEN, kernel2)
    
        # Subtract the grayscale image from its processed copy
        dif = cv2.subtract(bg, gr)
    
        # Apply thresholding
        bw = cv2.threshold(dif, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
        dark = cv2.threshold(bg, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    
        # Extract pixels in the dark region
        darkpix = gr[np.where(dark > 0)]
    
        # Threshold the dark region to get the darker pixels inside it
        darkpix = cv2.threshold(darkpix, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    
        # Paste the extracted darker pixels in the watermark region
        bw[np.where(dark > 0)] = darkpix.T
    
        cv2.imwrite('final.jpg', bw)
    
    
    back_rm('watermark.jpg')
    

    以下是最终结果:
    使用numpy处理时间很短

    time python back_rm.py 
    
    real    0m0.391s
    user    0m0.518s
    sys     0m0.185s
    

    enter image description here