您可以使用
isin()
属性筛选出
top_words
在第三本书中
top_ words
在整个语料库中。
(在下面的例子中,我从
http://www.gutenberg.org/
)
import codecs
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
# import nltk
# nltk.download('punkt')
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
def tokenize(text):
tokens = word_tokenize(text)
stems = []
for item in tokens: stems.append(PorterStemmer().stem(item))
return stems
with codecs.open("56732-0.txt",'r','utf-8') as i1,\
codecs.open("56734-0.txt",'r','utf-8') as i2,\
codecs.open("56736-0.txt",'r','utf-8') as i3:
# your corpus
t1=i1.read().replace('\n',' ')
t2=i2.read().replace('\n',' ')
t3=i3.read().replace('\n',' ')
text = [t1,t2,t3]
# word tokenize and stem
text = [" ".join(tokenize(txt.lower())) for txt in text]
vectorizer = TfidfVectorizer()
matrix = vectorizer.fit_transform(text).todense()
# transform the matrix to a pandas df
matrix = pd.DataFrame(matrix, columns=vectorizer.get_feature_names())
# sum over each document (axis=0)
top_words = matrix.sum(axis=0).sort_values(ascending=False)
# top_words for the 3rd book alone
text = [" ".join(tokenize(t3.lower()))]
matrix = vectorizer.fit_transform(text).todense()
matrix = pd.DataFrame(matrix, columns=vectorizer.get_feature_names())
top_words3 = matrix.sum(axis=0).sort_values(ascending=False)
# Mask out words in t3
mask = ~top_words.index.isin(top_words3.index)
# Filter those words from top_words
top_words = top_words[mask]
top_words.to_csv('dict.csv', index=True, float_format="%f",encoding="utf-8")