您可以将自定义函数用于
numpy.where
和布尔掩码
eq
(
==
df = pd.DataFrame({
'weeknumber':[1,2,3,4,5,6],
'gummibears':[7,8,9,4,0,0],
'chocolate': [0,3,5,0,1,0],
'mint': [5,3,0,9,2,0]
})
def kg_to_string(col):
return np.where(df[col].eq(0), '', ' ' + df[col].astype(str) + 'kg of '+ col +',')
start = 'In calendar week (' + df['weeknumber'].astype(str) + '), customers have bought'
mask = df[['gummibears','gummibears','mint']].eq(0).all(axis=1)
df['text'] = start + np.where(mask, ' nothing', kg_to_string('gummibears') +
kg_to_string('chocolate') +
kg_to_string('mint'))
df['text'] = df['text'].str.rstrip(',')
print (df['text'].tolist())
['In calendar week (1), customers have bought 7kg of gummibears, 5kg of mint',
'In calendar week (2), customers have bought 8kg of gummibears, 3kg of chocolate,
3kg of mint',
'In calendar week (3), customers have bought 9kg of gummibears, 5kg of chocolate',
'In calendar week (4), customers have bought 4kg of gummibears, 9kg of mint',
'In calendar week (5), customers have bought 1kg of chocolate, 2kg of mint',
'In calendar week (6), customers have bought nothing']