代码之家  ›  专栏  ›  技术社区  ›  jothi pandiyan

拖动查看器Api中的选择对象?

  •  0
  • jothi pandiyan  · 技术社区  · 7 年前

    1 回复  |  直到 7 年前
        1
  •  0
  •   Felipe    7 年前

    作为代码示例,我正在实现窗口选择功能。看看这个 article 有关更多详细信息,请继续关注以下内容。。。

    import Toolkit from 'Viewer.Toolkit'
    
    export default class SelectSet {
    
      /////////////////////////////////////////////////////////
      //
      //
      /////////////////////////////////////////////////////////
      constructor (viewer) {
    
        this.viewer = viewer
    
        this.viewer.impl.createOverlayScene (
          'debug', this.lineMat)
      }
    
      /////////////////////////////////////////////////////////
      // Set model: required to compute the bounding boxes
      //
      /////////////////////////////////////////////////////////
      async setModel (model) {
    
        this.model = model
    
        const instanceTree = model.getData().instanceTree
    
        const rootId = instanceTree.getRootId()
    
        const bbox =
          await this.getComponentBoundingBox(
            model, rootId)
    
        this.boundingSphere = bbox.getBoundingSphere()
    
        const leafIds = await Toolkit.getLeafNodes (model)
    
        this.boundingBoxInfo = leafIds.map((dbId) => {
    
          const bbox = this.getLeafComponentBoundingBox(
            model, dbId)
    
          return {
            bbox,
            dbId
          }
        })
    
        console.log(this.boundingBoxInfo)
        console.log(model)
      }
    
      /////////////////////////////////////////////////////////
      // Returns bounding box as it appears in the viewer
      // (transformations could be applied)
      //
      /////////////////////////////////////////////////////////
      getModifiedWorldBoundingBox (fragIds, fragList) {
    
        const fragbBox = new THREE.Box3()
        const nodebBox = new THREE.Box3()
    
        fragIds.forEach(function(fragId) {
    
          fragList.getWorldBounds(fragId, fragbBox)
    
          nodebBox.union(fragbBox)
        })
    
        return nodebBox
      }
    
      /////////////////////////////////////////////////////////
      // Returns bounding box for aggregated fragments
      //
      /////////////////////////////////////////////////////////
      async getComponentBoundingBox (model, dbId) {
    
        const fragIds = await Toolkit.getFragIds(
          model, dbId)
    
        const fragList = model.getFragmentList()
    
        return this.getModifiedWorldBoundingBox(
          fragIds, fragList)
      }
    
      getLeafComponentBoundingBox (model, dbId) {
    
        const fragIds = Toolkit.getLeafFragIds(
          model, dbId)
    
        const fragList = model.getFragmentList()
    
        return this.getModifiedWorldBoundingBox(
          fragIds, fragList)
      }
    
      /////////////////////////////////////////////////////////
      // Creates Raycaster object from the mouse pointer
      //
      /////////////////////////////////////////////////////////
      pointerToRay (pointer) {
    
        const camera = this.viewer.navigation.getCamera()
        const pointerVector = new THREE.Vector3()
        const rayCaster = new THREE.Raycaster()
        const pointerDir = new THREE.Vector3()
        const domElement = this.viewer.canvas
    
        const rect = domElement.getBoundingClientRect()
    
        const x =  ((pointer.clientX - rect.left) / rect.width) * 2 - 1
        const y = -((pointer.clientY - rect.top) / rect.height) * 2 + 1
    
        if (camera.isPerspective) {
    
          pointerVector.set(x, y, 0.5)
    
          pointerVector.unproject(camera)
    
          rayCaster.set(camera.position,
            pointerVector.sub(
              camera.position).normalize())
    
        } else {
    
          pointerVector.set(x, y, -15)
    
          pointerVector.unproject(camera)
    
          pointerDir.set(0, 0, -1)
    
          rayCaster.set(pointerVector,
            pointerDir.transformDirection(
              camera.matrixWorld))
        }
    
        return rayCaster.ray
      }
    
      /////////////////////////////////////////////////////////
      //
      //
      /////////////////////////////////////////////////////////
      containsBox (planes, box) {
    
        const {min, max} = box
    
        const vertices = [
          new THREE.Vector3(min.x, min.y, min.z),
          new THREE.Vector3(min.x, min.y, max.z),
          new THREE.Vector3(min.x, max.y, max.z),
          new THREE.Vector3(max.x, max.y, max.z),
          new THREE.Vector3(max.x, max.y, min.z),
          new THREE.Vector3(max.x, min.y, min.z),
          new THREE.Vector3(min.x, max.y, min.z),
          new THREE.Vector3(max.x, min.y, max.z)
        ]
    
        for (let vertex of vertices) {
    
          for (let plane of planes) {
    
            if (plane.distanceToPoint(vertex) < 0) {
    
              return false
            }
          }
        }
    
        return true
      }
    
      /////////////////////////////////////////////////////////
      //
      //
      /////////////////////////////////////////////////////////
      getCameraPlane () {
    
        const camera = this.viewer.navigation.getCamera()
    
        const normal = camera.target.clone().sub(
          camera.position).normalize()
    
        const pos = camera.position
    
        const dist =
          - normal.x * pos.x
          - normal.y * pos.y
          - normal.z * pos.z
    
        return new THREE.Plane (normal, dist)
      }
    
      /////////////////////////////////////////////////////////
      // Runs the main logic of the select set:
      // computes a pyramid shape from the selection window
      // corners and determines enclosed meshes from the model
      //
      /////////////////////////////////////////////////////////
      compute (pointer1, pointer2) {
    
        // build 4 rays to project the 4 corners
        // of the selection window
    
        const xMin = Math.min(pointer1.clientX, pointer2.clientX)
        const xMax = Math.max(pointer1.clientX, pointer2.clientX)
    
        const yMin = Math.min(pointer1.clientY, pointer2.clientY)
        const yMax = Math.max(pointer1.clientY, pointer2.clientY)
    
        const ray1 = this.pointerToRay({
          clientX: xMin,
          clientY: yMin
        })
    
        const ray2 = this.pointerToRay({
          clientX: xMax,
          clientY: yMin
        })
    
        const ray3 = this.pointerToRay({
          clientX: xMax,
          clientY: yMax
        })
    
        const ray4 = this.pointerToRay({
          clientX: xMin,
          clientY: yMax
        })
    
        // first we compute the top of the pyramid
        const top = new THREE.Vector3(0,0,0)
    
        top.add (ray1.origin)
        top.add (ray2.origin)
        top.add (ray3.origin)
        top.add (ray4.origin)
    
        top.multiplyScalar(0.25)
    
        // we use the bounding sphere to determine
        // the height of the pyramid
        const {center, radius} = this.boundingSphere
    
        // compute distance from pyramid top to center
        // of bounding sphere
    
        const dist = new THREE.Vector3(
          top.x - center.x,
          top.y - center.y,
          top.z - center.z)
    
        // compute height of the pyramid:
        // to make sure we go far enough,
        // we add the radius of the bounding sphere
    
        const height = radius + dist.length()
    
        // compute the length of the side edges
    
        const angle = ray1.direction.angleTo(
          ray2.direction)
    
        const length = height / Math.cos(angle * 0.5)
    
        // compute bottom vertices
    
        const v1 = new THREE.Vector3(
          ray1.origin.x + ray1.direction.x * length,
          ray1.origin.y + ray1.direction.y * length,
          ray1.origin.z + ray1.direction.z * length)
    
        const v2 = new THREE.Vector3(
          ray2.origin.x + ray2.direction.x * length,
          ray2.origin.y + ray2.direction.y * length,
          ray2.origin.z + ray2.direction.z * length)
    
        const v3 = new THREE.Vector3(
          ray3.origin.x + ray3.direction.x * length,
          ray3.origin.y + ray3.direction.y * length,
          ray3.origin.z + ray3.direction.z * length)
    
        const v4 = new THREE.Vector3(
          ray4.origin.x + ray4.direction.x * length,
          ray4.origin.y + ray4.direction.y * length,
          ray4.origin.z + ray4.direction.z * length)
    
        // create planes
    
        const plane1 = new THREE.Plane()
        const plane2 = new THREE.Plane()
        const plane3 = new THREE.Plane()
        const plane4 = new THREE.Plane()
        const plane5 = new THREE.Plane()
    
        plane1.setFromCoplanarPoints(top, v1, v2)
        plane2.setFromCoplanarPoints(top, v2, v3)
        plane3.setFromCoplanarPoints(top, v3, v4)
        plane4.setFromCoplanarPoints(top, v4, v1)
        plane5.setFromCoplanarPoints( v3, v2, v1)
    
        const planes = [
          plane1, plane2,
          plane3, plane4,
          plane5, this.getCameraPlane()
        ]
    
        // filter all bbox which are contained inside
        // the pyramid defined by our planes
    
        const selectedBBoxInfo =
          this.boundingBoxInfo.filter((bboxInfo) => {
    
            return this.containsBox(planes, bboxInfo.bbox)
          })
    
        const dbIds = selectedBBoxInfo.map((bboxInfo) => {
    
          return bboxInfo.dbId
        })
    
        return dbIds
      }
    }